Multidomain Spectral Methods and Radiation Boundary Conditions with Applications in Numerical Relativity
多域谱方法和辐射边界条件在数值相对论中的应用
基本信息
- 批准号:0855678
- 负责人:
- 金额:$ 9.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports research at the interface between applied mathematics and computational physics. An immediate goal of numerical relativity is the simulation of orbiting binaries, such as two black holes, in order to compute the radiation waveforms necessary to analyze output from gravitational wave detectors like the Laser Interferometric Gravitational Wave Observatory. The computational challenge of evolving the Einstein equations also drives modern research in numerical and applied analysis. This research will focus on spectral methods for numerical relativity (computer solution of the Einstein equations) and radiation boundary conditions, chiefly, but not exclusively, for the Einstein equations. Spectral methods offer superb efficiency, accuracy, and interpolation freedom. The latter is significant, since coordinate flexibility is paramount in Einstein's theory. Radiation boundary conditions allow for wave simulation (gravitational or otherwise) on finite computational domains with artificial boundaries, and their specification is a fundamental problem in computational mathematics with broad application in the sciences. Through the development of novel spectral methods with explicit applications, the goal of the research is to solve a fundamental wave problem which is intractable from the standpoint of current methods and computer resources, namely the efficient time integration of unequal mass binaries. The research program on spectral methods also includes exploration of the applicability of discontinuous Galerkin methods to the predominant moving puncture technique for orbiting binaries. Emphasizing both theoretical understanding and efficient numerical implementation, the research on radiation boundary conditions considers the scalar wave, Maxwell, and Einstein equations. Potential applications of the proposed investigations include high-aspect-ratio phenomena in computational acoustics and electromagnetics, extreme-mass-ratio binaries and rotating black holes in numerical relativity, and history-dependent radiation boundary conditions for the full nonlinear Einstein equations.
该奖项支持应用数学和计算物理之间的接口研究。数值相对论的一个直接目标是模拟轨道双星,如两个黑洞,以计算分析引力波探测器(如激光干涉引力波天文台)输出所需的辐射波形。演化爱因斯坦方程的计算挑战也推动了数值和应用分析的现代研究。这项研究将侧重于数值相对论(爱因斯坦方程的计算机解)和辐射边界条件的谱方法,主要是但不限于爱因斯坦方程。光谱方法提供了极高的效率、精度和插值自由度。后者意义重大,因为坐标的灵活性在爱因斯坦的理论中至关重要。辐射边界条件允许在具有人工边界的有限计算域上进行波模拟(重力或其他),并且它们的规范是计算数学中的基本问题,在科学中具有广泛的应用。通过开发新的谱方法与明确的应用程序,研究的目标是解决一个基本的波问题,这是棘手的从目前的方法和计算机资源的角度来看,即有效的时间积分不等质量的二进制文件。谱方法的研究计划还包括探索不连续伽辽金方法对轨道双星的主要移动穿刺技术的适用性。辐射边界条件的研究强调理论理解和有效的数值实现,考虑标量波,麦克斯韦和爱因斯坦方程。所提出的调查的潜在应用包括高纵横比的现象在计算声学和电磁学,极端质量比双星和旋转黑洞的数值相对论,和历史依赖的辐射边界条件的完整的非线性爱因斯坦方程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Lau其他文献
The Spinning Cube of Potential Doom
- DOI:
10.1145/990680.990699 - 发表时间:
2004-06 - 期刊:
- 影响因子:0
- 作者:
Stephen Lau - 通讯作者:
Stephen Lau
A Web-Based Sign Language Translator Using 3D Video Processing
使用 3D 视频处理的基于网络的手语翻译器
- DOI:
10.1109/nbis.2011.60 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
K. F. Li;Kylee Lothrop;Ethan Gill;Stephen Lau - 通讯作者:
Stephen Lau
Larval Development of Snook, Centropomus undecimalis (Pisces: Centropomidae)
Snook, Centropomus undecimalis (双鱼座: Centropomidae) 的幼虫发育
- DOI:
10.2307/1444662 - 发表时间:
1982 - 期刊:
- 影响因子:2.6
- 作者:
Stephen Lau;P. L. Shafland - 通讯作者:
P. L. Shafland
Parallelization of Radiance For Real Time Interactive Lighting Visualization Walkthroughs
实时交互式照明可视化演练的辐射并行化
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
D. Robertson;K. Campbell;Stephen Lau;T. Ligocki - 通讯作者:
T. Ligocki
Network Traffic Analysis With Query Driven Visualization SC 2005 HPC Analytics Results
使用查询驱动可视化进行网络流量分析 SC 2005 HPC 分析结果
- DOI:
10.1109/sc.2005.47 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Kurt Stockinger;Kesheng Wu;S. Campbell;Stephen Lau;M. Fisk;E. M. Gavrilov;A. Kent;Christopher E. Davis;Richard D. Olinger;Robert J. Young;James E. Prewett;Paul M. Weber;T. Caudell;E. .. Bethel;Steve Smith - 通讯作者:
Steve Smith
Stephen Lau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Lau', 18)}}的其他基金
Collaborative Research: Sparse spectral-tau methods for binary neutron star initial data
合作研究:双中子星初始数据的稀疏谱tau方法
- 批准号:
1216866 - 财政年份:2012
- 资助金额:
$ 9.31万 - 项目类别:
Standard Grant
NSF-NATO POSTDOCTORAL FELLOWSHIPS
NSF-北约博士后奖学金
- 批准号:
9710902 - 财政年份:1997
- 资助金额:
$ 9.31万 - 项目类别:
Fellowship Award
相似国自然基金
一种新型的PET/spectral-CT/CT三模态图像引导的小动物放射治疗平台的设计与关键技术研究
- 批准号:LTGY23H220001
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
关于spectral集和spectral拓扑若干问题研究
- 批准号:11661057
- 批准年份:2016
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
S3AGA样本(Spitzer-SDSS Spectral Atlas of Galaxies and AGNs)及其AGN研究
- 批准号:11473055
- 批准年份:2014
- 资助金额:95.0 万元
- 项目类别:面上项目
相似海外基金
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
- 批准号:
EP/Y002113/1 - 财政年份:2024
- 资助金额:
$ 9.31万 - 项目类别:
Research Grant
Development of cell-type identification methods based on visible and near-infrared spectral image
基于可见光和近红外光谱图像的细胞类型识别方法的发展
- 批准号:
23H03766 - 财政年份:2023
- 资助金额:
$ 9.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Complex Methods in Spectral and Scattering Problems
光谱和散射问题的复杂方法
- 批准号:
2244801 - 财政年份:2023
- 资助金额:
$ 9.31万 - 项目类别:
Standard Grant
Some Problems in Spectral Methods and Discrete Probability
谱方法和离散概率中的一些问题
- 批准号:
RGPIN-2019-06751 - 财政年份:2022
- 资助金额:
$ 9.31万 - 项目类别:
Discovery Grants Program - Individual
Time Series and Spectral Methods for Imputation, Regression, and Environmental Health
用于插补、回归和环境健康的时间序列和谱方法
- 批准号:
RGPIN-2017-04741 - 财政年份:2022
- 资助金额:
$ 9.31万 - 项目类别:
Discovery Grants Program - Individual
Spectral methods for single and multiple graph inference
用于单图和多图推理的谱方法
- 批准号:
2210805 - 财政年份:2022
- 资助金额:
$ 9.31万 - 项目类别:
Standard Grant
Space-time Spectral Methods for Differential equations
微分方程的时空谱方法
- 批准号:
RGPIN-2022-03665 - 财政年份:2022
- 资助金额:
$ 9.31万 - 项目类别:
Discovery Grants Program - Individual
Workshops in Spectral Methods in Algebra, Geometry, and Topology
代数、几何和拓扑谱方法研讨会
- 批准号:
2230159 - 财政年份:2022
- 资助金额:
$ 9.31万 - 项目类别:
Standard Grant
Brown’s Spectral Measure: New Computational Methods from Stochastics, Partial Differential Equations, and Operator Theory
布朗谱测量:来自随机学、偏微分方程和算子理论的新计算方法
- 批准号:
2055340 - 财政年份:2021
- 资助金额:
$ 9.31万 - 项目类别:
Continuing Grant
RUI: Multiscale Methods, Singular Limits, and Spectral Problems Related to Materials Science
RUI:与材料科学相关的多尺度方法、奇异极限和谱问题
- 批准号:
2110036 - 财政年份:2021
- 资助金额:
$ 9.31万 - 项目类别:
Standard Grant