Complex Methods in Spectral and Scattering Problems
光谱和散射问题的复杂方法
基本信息
- 批准号:2244801
- 负责人:
- 金额:$ 29.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Applications of complex function theory in spectral and scattering problems for differential equations present examples of the undisputed relevance of pure mathematics in the areas of theoretical physics and engineering. One of the focal points will be the non-linear Fourier transform (NLFT), closely related to scattering transform for the Dirac system of differential equations. The Dirac system is the quantum electrodynamical law governing spin ½ particles and should be thought of as a relativistic generalization of the Schrödinger equation. Better understanding of NLFT can lead to progress in several areas of mathematical analysis and non-linear differential equations. Questions of convergence and maximal estimates for NLFT will be studied. These are considered by the experts to be among the main problems of non-linear harmonic analysis. The second part will concern extensions and generalizations of classical results of spectral theory, which can be obtained via a new approach developed recently based on the use of so-called Toeplitz operators. Some related questions will be investigated jointly with graduate students. The materials of the project will be used in minicourses and a special topics course aiming at junior researchers and graduate students.A large part of this project concerns problems of convergence of the scattering data for a Dirac system of differential equations. Scattering is commonly viewed as a non-linear version of the classical Fourier transform, which connects this project to the maximal estimates for NLFT. These connections lead to natural questions of establishing versions of the classical results of Fourier analysis in the non-linear settings of scattering. They have been appearing in various forms for most of the last century and remain an object of active research today. As an example, one can look at the non-linear version of Parseval's identity, which can be traced as far back as the work of Verblunski in the 1930s, and a non-linear analog of Hausdorff-Young inequality, which appears in more recent work of Christ and Kiselev. Several of such questions will be studied, as well as ones in the areas of inverse spectral theory and completeness in various spaces of analytic functions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
复变函数理论在微分方程的光谱和散射问题中的应用,提供了理论物理和工程领域中纯数学无可争议的相关性的例子。重点之一将是非线性傅立叶变换(NLFT),密切相关的散射变换的狄拉克系统的微分方程。狄拉克系统是控制自旋1/2粒子的量子电动力学定律,应该被认为是薛定谔方程的相对论推广。更好地理解NLFT可以在数学分析和非线性微分方程的几个领域取得进展。将研究NLFT的收敛性和最大估计问题。专家们认为这些是非线性谐波分析的主要问题。第二部分将涉及扩展和推广的经典结果的谱理论,这可以通过一个新的方法,最近开发的基础上使用所谓的Toeplitz运营商。一些相关问题将与研究生共同研究。本计画的资料将用于针对初级研究人员与研究生的小型课程与专题课程。本计画的大部分内容是关于Dirac微分方程组的散射资料的收敛问题。散射通常被视为经典傅立叶变换的非线性版本,它将该项目与NLFT的最大估计相联系。这些连接导致自然的问题,建立版本的经典结果的傅立叶分析中的非线性设置的散射。它们在上个世纪的大部分时间里以各种形式出现,今天仍然是积极研究的对象。作为一个例子,我们可以看看Parseval恒等式的非线性版本,它可以追溯到20世纪30年代Verblunski的工作,以及Hausdorff Young不等式的非线性模拟,它出现在Christ和Kiselev最近的工作中。一些这样的问题将被研究,以及在反频谱理论和完整性领域的各种空间的解析functions.This奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexei Poltoratski其他文献
On the determinacy problem for measures
- DOI:
10.1007/s00222-015-0588-6 - 发表时间:
2015-03-14 - 期刊:
- 影响因子:3.600
- 作者:
Mishko Mitkovski;Alexei Poltoratski - 通讯作者:
Alexei Poltoratski
The Hilbert transform of a measure
- DOI:
10.1007/s11854-010-0017-0 - 发表时间:
2010-12-19 - 期刊:
- 影响因子:0.900
- 作者:
Alexei Poltoratski;Barry Simon;Maxim Zinchenko - 通讯作者:
Maxim Zinchenko
Alexei Poltoratski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexei Poltoratski', 18)}}的其他基金
Inner Functions, Spectra, and Scattering
内部函数、光谱和散射
- 批准号:
1954085 - 财政年份:2020
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Toeplitz Order and Spectral Problems
托普利兹阶和谱问题
- 批准号:
1665264 - 财政年份:2017
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
Toeplitz approach to the Uncertainty Principle
不确定性原理的托普利茨方法
- 批准号:
1362450 - 财政年份:2014
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
Completeness Problems in Harmonic Analysis and Spectral Theory
调和分析和谱理论中的完备性问题
- 批准号:
1101278 - 财政年份:2011
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Waves and Spectra: Analysis/PDE Conference.
波和谱:分析/偏微分方程会议。
- 批准号:
1101551 - 财政年份:2011
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Uniqueness and Convergence of Analytic Integrals in Harmonic and Spectral Analysis
调和与谱分析中解析积分的唯一性和收敛性
- 批准号:
0800300 - 财政年份:2008
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Asymptotics of Analytic Integrals and the Beurling-Malliavin Theory
解析积分的渐进性和 Beurling-Malliavin 理论
- 批准号:
0500852 - 财政年份:2005
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Boundary Behavior of Analytic Functions
解析函数的边界行为
- 批准号:
0200699 - 财政年份:2002
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
Asymptotic Behavior of Cauchy-Stieltjes Type Integrals of Singular Measures
奇异测度的柯西-斯蒂尔切斯型积分的渐近行为
- 批准号:
9970151 - 财政年份:1999
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
- 批准号:
EP/Y002113/1 - 财政年份:2024
- 资助金额:
$ 29.93万 - 项目类别:
Research Grant
Development of cell-type identification methods based on visible and near-infrared spectral image
基于可见光和近红外光谱图像的细胞类型识别方法的发展
- 批准号:
23H03766 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Some Problems in Spectral Methods and Discrete Probability
谱方法和离散概率中的一些问题
- 批准号:
RGPIN-2019-06751 - 财政年份:2022
- 资助金额:
$ 29.93万 - 项目类别:
Discovery Grants Program - Individual
Time Series and Spectral Methods for Imputation, Regression, and Environmental Health
用于插补、回归和环境健康的时间序列和谱方法
- 批准号:
RGPIN-2017-04741 - 财政年份:2022
- 资助金额:
$ 29.93万 - 项目类别:
Discovery Grants Program - Individual
Spectral methods for single and multiple graph inference
用于单图和多图推理的谱方法
- 批准号:
2210805 - 财政年份:2022
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Space-time Spectral Methods for Differential equations
微分方程的时空谱方法
- 批准号:
RGPIN-2022-03665 - 财政年份:2022
- 资助金额:
$ 29.93万 - 项目类别:
Discovery Grants Program - Individual
Workshops in Spectral Methods in Algebra, Geometry, and Topology
代数、几何和拓扑谱方法研讨会
- 批准号:
2230159 - 财政年份:2022
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Brown’s Spectral Measure: New Computational Methods from Stochastics, Partial Differential Equations, and Operator Theory
布朗谱测量:来自随机学、偏微分方程和算子理论的新计算方法
- 批准号:
2055340 - 财政年份:2021
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
RUI: Multiscale Methods, Singular Limits, and Spectral Problems Related to Materials Science
RUI:与材料科学相关的多尺度方法、奇异极限和谱问题
- 批准号:
2110036 - 财政年份:2021
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Some Problems in Spectral Methods and Discrete Probability
谱方法和离散概率中的一些问题
- 批准号:
RGPIN-2019-06751 - 财政年份:2021
- 资助金额:
$ 29.93万 - 项目类别:
Discovery Grants Program - Individual