Set Theory

集合论

基本信息

  • 批准号:
    0856201
  • 负责人:
  • 金额:
    $ 39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-15 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The Inner Model Program is one of thecentral areas of Set Theory. The traditional view of this program has been that of an increment program with progress measured by a progression up the hierarchy of large cardinals. It is now known that this view is not correct. A critical transition occurs at the level of exactly one supercompact cardinal, and in solving the Inner Model Program for this specific large cardinal axiom, one solves the Inner Model Program for essentially all known large cardinal axioms. The solution must necessarily yield an ultimate enlargement of Goedel's inner model L. This ultimate-L must closely approximate the parent universe within which it is constructed. The ramifications for Set Theory will be profound, ranging from new inconsistency results in ZF to combinatorial theorems of ZFC proved by exploiting the closeness of ultimate-L to V. Ultimate-L will also provide a key setting for resolving the hierarchy of large cardinals beyond the level of omega-huge cardinals which constitute essentially the strongest large cardinals axioms which are not known to be inconsistent. The point is that ultimate-L inherits large cardinals from V exactly as L inherits large cardinals from V if 0-sharp does not exist. Therefore the analysis of what is possible in ultimate-L is in effect the analysis of what is possible in V.The mathematical study of Infinity in its modern incarnation dates from thework of Cantor in the late 19th century, this area of mathematicsis Set Theory. With the results of Goedel and thenCohen from the middle of the 20th century it was established that many of thefundamental problems could not be solved on the basis of the current ZFC axioms for Set Theory. The most famous example is the problem of Cantor's ContinuumHypothesis which was placed first by Hilbert on his list of 20 questionsin 1900. The solution to this question and the numerous other questions now known to be unsolvable requires the discovery of new axioms beyond the current axioms. Over the last few years a new approach to this problem has emerged based on generalizations of Goedel's axiom of constructibility. There is now convincing evidence that this approach will lead to new axioms which settle all the problems of Set Theory currently known to be unsolvable, are compatible with all known strong axioms of infinity, and which themselves are immune to kind of unsolvable problems that are ubiquitous in Set Theory. These examples will be the first examples of such axioms ever discovered and therefore show great promise for at long last finding the correct axioms for Set Theory and thereby solving in particular the problem of the Continuum Hypothesis.
该奖项是根据2009年《美国复苏和再投资法案》(公法111-5)提供资金的。内模计划是集合论的核心领域之一。这个方案的传统观点一直是一个增量方案,其进展是通过大基数等级的递增来衡量的。现在已经知道,这种观点是不正确的。一个关键的转变恰好发生在一个超紧基数的水平上,在求解这个特定的大基数公理的内模程序时,基本上解决了几乎所有已知的大基数公理的内模程序。这个解决方案必然会导致歌德尔的内部模型L的最终放大。这个最终的L必须非常接近于构建它的母宇宙。集合论的影响将是深远的,从ZF中新的不一致性结果到ZFC的组合定理,通过利用终极-L到V的贴近性来证明-终极-L还将提供一个关键设置,用于解决超出欧米伽-巨基数水平的大基数的层次结构,这些大基数公理基本上构成了已知不一致的最强大基数公理。关键是,终极-L继承了V的大基数,就像如果0-夏普不存在,L继承了V的大基数一样。因此,对终极可能的分析-L实际上就是对V的可能的分析。对无穷的现代化身的数学研究可以追溯到19世纪末康托的工作,这是数学集合论的一个领域。20世纪中叶Goedel和Then Cohen的结果表明,许多基本问题不能用目前集合论的ZFC公理来解决。最著名的例子是康托的连续假设问题,这是希尔伯特在1900年他的20个问题清单上排在第一位的问题。要解决这个问题和许多其他现在已知无法解决的问题,就需要在现有公理之外发现新的公理。在过去的几年里,基于歌德尔的可构造性公理的推广,出现了一种解决这个问题的新方法。现在有令人信服的证据表明,这种方法将导致新的公理,这些公理解决了集合论目前已知的所有不可解的问题,与所有已知的强大无穷公理兼容,并且本身不受集合论中普遍存在的那种不可解问题的影响。这些例子将是迄今发现的此类公理的第一个例子,因此显示出最终为集合论找到正确公理的巨大希望,从而特别是解决了连续统假设的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Woodin其他文献

William Woodin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Woodin', 18)}}的其他基金

Classification and invariants for Borel equivalence relations
Borel 等价关系的分类和不变量
  • 批准号:
    2246746
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
The HOD Project
HOD项目
  • 批准号:
    1953093
  • 财政年份:
    2020
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
The Ultimate L Project
终极L计划
  • 批准号:
    1664764
  • 财政年份:
    2017
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Set Theory
集合论
  • 批准号:
    1460238
  • 财政年份:
    2014
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Set Theory
集合论
  • 批准号:
    1301658
  • 财政年份:
    2013
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Set Theory
集合论
  • 批准号:
    0355334
  • 财政年份:
    2004
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Set Theory
集合论
  • 批准号:
    9970255
  • 财政年份:
    1999
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Set Theory
数学科学:集合论
  • 批准号:
    9322442
  • 财政年份:
    1994
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Set Theory
数学科学:集合论
  • 批准号:
    9103042
  • 财政年份:
    1991
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Set Theory: Presidential Young Investigator Award
数学科学:集合论:总统青年研究员奖
  • 批准号:
    8917428
  • 财政年份:
    1989
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
  • 批准号:
    2400200
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Descriptive Set Theory and Computability
描述性集合论和可计算性
  • 批准号:
    2348208
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Choiceless set theory
无选择集合论
  • 批准号:
    2348371
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Combinatorial Set Theory, Forcing, and Large Cardinals
组合集合论、强迫和大基数
  • 批准号:
    2308248
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Eighth European Set Theory Conference
第八届欧洲集合论会议
  • 批准号:
    2214692
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Set Theory and Its Applications
集合论及其应用
  • 批准号:
    2153975
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Duality in Banach spaces and uniform spaces in constructive and predicative set theory
构造性和预测集合论中巴纳赫空间和一致空间的对偶性
  • 批准号:
    22K03400
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combinatorial set theory and measurable combinatorics
组合集合论和可测组合学
  • 批准号:
    RGPIN-2021-03549
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of set theory to abstract harmonic analysis
集合论在抽象调和分析中的应用
  • 批准号:
    RGPIN-2017-05712
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Grants Program - Individual
Measurable group theory, descriptive set theory and model theory of homogeneous structures
可测群论、描述集合论和齐次结构模型论
  • 批准号:
    RGPAS-2020-00097
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了