The HOD Project
HOD项目
基本信息
- 批准号:1953093
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Set Theory is the area of Mathematics which is focused on the mathematical study of infinity. The fundamental questions include that of Cantor’s Continuum Hypothesis. This was the first question on the now famous list of proposed by Hilbert in 1900. By the results of Godel in 1940 and Cohen in 1963, this problem has been shown to be formally unsolvable on the basis of the axioms of Set Theory. But this does not mean that the question has no answer, rather it simply shows the accepted axioms of Set Theory are incomplete. In previously funded research, a single new axiom has been discovered which resolves not only the problem of the Continuum Hypothesis but essentially all the other questions which Cohen’ method has been used in the last 50 years to show are also unsolvable. The compatibility of this new axiom with large cardinal axioms is now the central problem. The focus of this project is to bring the analysis of this new axiom to a conclusion, by either showing this new axiom cannot be refuted by large cardinal axioms, or by showing that some reasonable large cardinal axiom refutes this new axiom. In addition the project also provides research training opportunities for graduate students.The HOD Dichotomy Theorem isolates the fundamental issue raised by the Ultimate L Conjecture. This theorem shows that assuming reasonable large cardinal axioms, HOD must be either very close to V or very far from V. The HOD Conjecture is the conjecture that the “far option” is vacuous. The only plausible approach at present to resolving the problem of the HOD Conjecture lies in the Ultimate L Conjecture. The focus of this project is in two parts. Either prove the Ultimate L Conjecture by extending inner model to the level of a supercompact cardinal, this would prove the HOD Conjecture, or refute the Ultimate L Conjecture which would strongly argue that the HOD Conjecture is false. The latter possibility is now a reasonable research target because of the increasing number of constraints which have been discovered that the inner model theory for a supercompact cardinal must satisfy. Either way, the successful conclusion of this project will resolve the problem of the compatibility of the axiom ``V=Ultimate” with large cardinal axioms. Depending on the outcome, one either verifies the HOD Conjecture or discovers why the HOD Conjecture is likely false.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
集合理论是数学领域,其重点是无限的数学研究。基本问题包括Cantor的连续假设。这是希尔伯特(Hilbert)在1900年提出的现在著名清单上的第一个问题。根据1940年的戈德尔(Godel)和1963年的科恩(Cohen)的结果,根据集合理论的公理,该问题已被证明是正式无法解决的。但这并不意味着这个问题没有答案,而是仅仅表明了集合理论的公理是不完整的。在先前资助的研究中,已经发现了一个新的公理,它不仅可以解决连续性假设的问题,而且从本质上讲,在过去50年中使用了Cohen方法的所有其他问题也无法解决。现在,这种新公理与大型基本公理的兼容性现在是中心问题。该项目的重点是通过表明该新公理不能被大型的基本公理驳斥,或者通过表明某些合理的大型基本公理会反驳这一新公理,从而使对新公理的分析得出结论。此外,该项目还为研究生提供了研究培训机会。HOD二分法定理隔离了最终的猜想提出的基本问题。该定理表明,假设合理的大型基本公理,HOD必须非常接近V或离V很远。HOD猜想是“远方选项”是真空的猜想。目前,解决HOD猜想问题的唯一合理方法在于最终的猜想。该项目的重点分为两个部分。要么通过将内部模型扩展到超级紧密的基数水平来证明最终的猜想,这将证明hod的猜想,或者反驳最终的L猜想,这将强烈认为HOD猜想是错误的。后来的可能性现在是一个合理的研究目标,因为越来越多的限制因素发现,超级紧张的基数的内部模型理论必须满足。无论哪种方式,该项目的成功结论都将解决公理与大型基本公理的兼容性问题。根据结果的不同,人们要么验证HOD的猜想,要么发现为什么HOD猜想可能是错误的。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子和更广泛的影响审查标准来通过评估来诚实地表示支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Woodin其他文献
William Woodin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Woodin', 18)}}的其他基金
Classification and invariants for Borel equivalence relations
Borel 等价关系的分类和不变量
- 批准号:
2246746 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mathematical Sciences: Set Theory: Presidential Young Investigator Award
数学科学:集合论:总统青年研究员奖
- 批准号:
8917428 - 财政年份:1989
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
利用星震学恒星作为定标源提高巡天项目中海量恒星的参数精度
- 批准号:12373031
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
组态视角下数字化项目集群的复杂风险评估与治理研究
- 批准号:72301154
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
国际应用系统分析研究学会2023暑期青年科学家项目
- 批准号:72311540128
- 批准年份:2023
- 资助金额:4.5 万元
- 项目类别:国际(地区)合作与交流项目
碳规制/碳交易驱动下的大型复杂工程项目绿色调度优化研究
- 批准号:72371195
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
亚洲—北美—非洲间断分布类群鼠刺属的时空分布格局及形成机制研究
- 批准号:32360055
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
相似海外基金
e-health tools to promote Equality in Quality of Life for childhood to young adulthood cancer patients, survivors and their families - a PanEuropean project supported by PanCare and Harmonic consortia
电子医疗工具可促进儿童到成年癌症患者、幸存者及其家人的生活质量平等 - 这是由 PanCare 和 Harmonic 联盟支持的 PanEuropean 项目
- 批准号:
10098114 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
EU-Funded
Net Zero Rail Product Commercialisation Project
净零轨产品商业化项目
- 批准号:
10098199 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Priceworx Ultimate+: A world-first AI-driven material cost forecaster for construction project management.
Priceworx Ultimate:世界上第一个用于建筑项目管理的人工智能驱动的材料成本预测器。
- 批准号:
10099966 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Project GANESHA - Getting power Access to rural-Nepal through thermally cooled battery Energy storage for transport and Home Applications
GANESHA 项目 - 通过热冷却电池为尼泊尔农村地区提供电力 用于运输和家庭应用的储能
- 批准号:
10085992 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
NESP MaC Project 4.5– Developing an Integrated Pest Management Framework for Feral Pigs in Coastal Environments 2024-2026 (NAILSMA)
NESP MaC 项目 4.5 — 为 2024-2026 年沿海环境中的野猪制定综合害虫管理框架 (NAILSMA)
- 批准号:
global : ba1e00f0-9953-4c17-b990-ba7aed84ce07 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别: