GOALI: Nanoscale Hysteresis Modeling and Control in Precision Equipment
GOALI:精密设备中的纳米级磁滞建模和控制
基本信息
- 批准号:0900286
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-15 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Heightened performance requirements have driven improvements in precision motion equipment that now boast accuracies in the nanometer range. However, such accuracies require expensive noncontacting bearings, while roller bearings provide the best performance/cost benefit. Despite past research in this area, adequate friction mitigation remains the limiting factor for precision mechanical motion stages. This research will investigate techniques for improving precision motion control using knowledge of friction. Hysteresis models will be used to identify, evaluate and predict friction experimentally, and to design improved motion control systems that mitigate friction's effects. This research will also investigate the ability to reject disturbances caused by roller bearings on precision motion stages by sensing the ball bearing position and relate that to fluctuations in velocity. Finally, control approaches for minimizing the effects of bearing disturbances and bearing friction on the ultra-slow motion of stages will be studied. If successful, this research will increase the accuracy and speed of response of precision motion systems by pushing the accuracy of roller bearing stages to the nanoscale. While noncontact bearings provide the lowest friction and highest precision, manufacturing them to ever tighter tolerances drives up cost. Improved manufacturing techniques for roller bearings have improved their performance, and now stages using roller bearings can realize nanometer performance. Still, the hysteretic characteristics of roller bearings limits their performance. This research will enable precision stages to be operated at lower cost with higher precision and accuracy. This provides considerable impact for end users of precision motion stages, who will be able to achieve improved manufacturing and metrology processes as a result of improved motion control systems. Finally, this research will provide an alignment of university research with industrial needs and the opportunity for students to conduct research in an industrial setting, working on research problems with immediate technological application.
更高的性能要求推动了精密运动设备的改进,这些设备现在号称具有纳米级的精度。然而,这样的精度需要昂贵的非接触式轴承,而滚子轴承提供最佳的性能/成本效益。尽管过去在这一领域进行了研究,但足够的摩擦减缓仍然是精密机械运动平台的限制因素。这项研究将研究利用摩擦知识提高运动控制精度的技术。迟滞模型将被用来在实验中识别、评估和预测摩擦,并设计改进的运动控制系统,以减轻摩擦的影响。这项研究还将研究通过检测滚珠轴承位置并将其与速度波动相关联来抑制滚子轴承在精密运动平台上造成的干扰的能力。最后,研究了减小轴承扰动和轴承摩擦对工作台超慢运动影响的控制方法。如果成功,这项研究将通过将滚子轴承工作台的精度推到纳米级来提高精密运动系统的响应精度和速度。虽然非接触式轴承提供了最低的摩擦力和最高的精度,但制造它们的公差越来越小,这会增加成本。改进的滚子轴承制造技术提高了它们的性能,现在使用滚子轴承的阶段可以实现纳米级的性能。尽管如此,滚子轴承的滞后特性限制了它们的性能。这项研究将使精密工作台能够以较低的成本操作,具有较高的精度和精确度。这为精密运动平台的最终用户提供了相当大的影响,他们将能够由于改进的运动控制系统而实现改进的制造和计量工艺。最后,这项研究将使大学研究与工业需求保持一致,并为学生提供在工业环境中进行研究的机会,致力于具有直接技术应用的研究问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Cole其他文献
A White Paper on Locational Information and the Public Interest
关于位置信息和公共利益的白皮书
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
M. Goodchild;R. Appelbaum;J. Crampton;William Herbert;K. Janowicz;M. Kwan;Katina Michael;Luis Alvarez León;M. Bennett;Daniel Cole;Kitty Currier;Victoria Fast;Jeffery Hirsch;Markus Kattenbeck;P. Kedron;J. Kerski;Zilong Liu;T. Nelson;Toby Shulruff;R. Sieber;John Wertman;C. Wilmott;B. Zhao;Rui Zhu;Julaiti Nilupaer;C. Dony;G. Langham - 通讯作者:
G. Langham
Variation in Stride Length of Myosin-5A Revealed by Interferometric Scattering Microscopy (iSCAT)
- DOI:
10.1016/j.bpj.2017.11.1795 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Joanna Andrecka;Adam Fineberg;Daniel Cole;Alistair Curd;Kavitha Thirumurugan;Yasuharu Takagi;James R. Sellers;Peter J. Knight;Philipp Kukura - 通讯作者:
Philipp Kukura
Complementary studies of lipid membrane dynamics using iSCAT and STED microscopy
使用 iSCAT 和 STED 显微镜对脂质膜动力学进行补充研究
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
F. Reina;S. Galiani;Dilip Shrestha;E. Sezgin;G. D. Wit;Daniel Cole;B.;C. Lagerholm;P. Kukura;C. Eggeling - 通讯作者:
C. Eggeling
Nanometre resolution stepping pattern and structure of acto-myosin-5a at high ATP reveals new mechanism for processive translocation
- DOI:
10.1016/j.bpj.2021.11.1444 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Yasuharu Takagi;Adam Fineberg;Kavitha Thirumurugan;Neil Billington;Joanna Andrecka;Gavin Young;Daniel Cole;James R. Sellers;Peter J. Knight;Philipp Kukura - 通讯作者:
Philipp Kukura
Quantitative Mass Imaging of Actin Nucleation
- DOI:
10.1016/j.bpj.2018.11.2967 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Nikolas Hundt;Gavin Young;Daniel Cole;Max Hantke;Philipp Kukura - 通讯作者:
Philipp Kukura
Daniel Cole的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Cole', 18)}}的其他基金
FLF Next generation atomistic modelling for medicinal chemistry and biology
FLF 下一代药物化学和生物学原子建模
- 批准号:
MR/Y019601/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
Next generation atomistic modelling for medicinal chemistry and biology
药物化学和生物学的下一代原子建模
- 批准号:
MR/T019654/1 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Fellowship
Application of large-scale quantum mechanical simulation to the development of future drug therapies
大规模量子力学模拟在未来药物疗法开发中的应用
- 批准号:
EP/R010153/1 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Dynamic Maskless Holographic Lithography
动态无掩模全息光刻
- 批准号:
0928353 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NER: Torque Spectroscopy for Nanosystem Characterization and Fabrication
NER:用于纳米系统表征和制造的扭矩光谱
- 批准号:
0210210 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Impact of MRI contrast agent design on nanoscale interactions with neutrophils and platelets
职业:MRI 造影剂设计对中性粒细胞和血小板纳米级相互作用的影响
- 批准号:
2339015 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Conference: 2024 NanoFlorida Conference: New Frontiers in Nanoscale interactions
会议:2024 年纳米佛罗里达会议:纳米尺度相互作用的新前沿
- 批准号:
2415310 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Amplification of chiral recognition and discrimination among amino-acid-based nanoscale ions during assembly induced by electrostatic interaction
静电相互作用诱导组装过程中氨基酸纳米级离子之间手性识别和辨别的放大
- 批准号:
2309886 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Picometre Surface Nanoscale Axial Photonics (PicoSNAP)
皮米表面纳米级轴向光子学 (PicoSNAP)
- 批准号:
EP/X03772X/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Correlating neuronal activity and large volume nanoscale imaging using AI
使用 AI 将神经元活动与大体积纳米级成像关联起来
- 批准号:
BB/Y51391X/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
ERI: Molecular-level Characterization of Water-in-Salt Electric Double-Layer Capacitors: Nanoscale Thermal Effects on Differential Capacitance
ERI:盐包水双电层电容器的分子级表征:微分电容的纳米级热效应
- 批准号:
2347562 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
REU Site: The Physics of Waves from the Nanoscale to the Cosmic Scale
REU 站点:从纳米尺度到宇宙尺度的波物理学
- 批准号:
2349426 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Quantum microscopy facility for ultrasensitive nanoscale magnetic imaging
用于超灵敏纳米级磁成像的量子显微镜设备
- 批准号:
LE240100092 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
CAREER: Engineering Chiral Nanoscale Interactions to Enhance Nanomaterial Transport and Uptake in Tissue and at Biointerfaces
职业:工程手性纳米级相互作用以增强组织和生物界面中纳米材料的运输和吸收
- 批准号:
2337387 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Nanoscale Resolution of Near-Interface Crystallization in Multicomponent Semicrystalline Polymeric Materials
职业:多组分半晶聚合物材料中近界面结晶的纳米级分辨率
- 批准号:
2338613 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant