Perfecting Monolayer Graphene by Defect Removal Using Novel Thermo-Mechanical Methods

使用新型热机械方法去除缺陷来完善单层石墨烯

基本信息

  • 批准号:
    0900692
  • 负责人:
  • 金额:
    $ 28.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-15 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

Recent experiments have demonstrated that graphene, a monolayer of carbon atoms, exhibits surprisingly high room-temperature electron mobility. Such a remarkable electronic behavior may well enable ground-breaking advances in nanoelectronics when silicon-based technologies reach their natural limits imposed by fundamental physics. However, the control over the quality of graphene remains a major challenge because even a few atomic defects may markedly degrade the performance of a graphene device. The research team seeks to develop a novel thermo-mechanical method for perfecting graphene sheets by effectively removing defects through an integrated experimental and modeling effort. In particular, time-accelerated modeling methods will be developed to determine defect migration barriers and pathways and defect-defect reaction mechanisms under thermal and mechanical loadings. In parallel, experimental measurements of Raman topography, electrical transport, and low-temperature magnetotransport of suspended monolayer graphene devices will be performed before and after thermo-mechanical treatments, aiming at validating the modeling approaches and evaluating the effectiveness of the methods. The novel thermo-mechanical methods developed for perfecting graphene sheets are expected to lead to major breakthroughs toward realization of the graphene-based next-generation electronics. The project will also help foster transformative progress for the analysis and manipulation of defects in graphene as well as other nano-materials in general. When combined with continuum mechanics theories, the research results will establish new constitutive equations relating thermo-mechanical loading with defect mobility, which will be valuable for improving existing graphene manufacturing processes and for designing future materials systems beyond graphene. On the educational front, the proposed research will generate many opportunities at both the college and K-12 levels. Graduate and undergraduate students at Penn State will benefit greatly from the multidisciplinary research experience in innovative, integrated experimental manipulation and computational nano-mechanics. The PIs will actively work with several organizations at Penn State to involve underrepresented groups including women and minority students in carrying out proposed research program.
最近的实验表明,石墨烯,一个单层的碳原子,表现出惊人的高室温电子迁移率。当硅基技术达到基础物理学所规定的自然极限时,这种非凡的电子行为很可能使纳米电子学取得突破性进展。然而,对石墨烯质量的控制仍然是一个重大挑战,因为即使是一些原子缺陷也可能显著降低石墨烯器件的性能。 该研究小组试图开发一种新的热机械方法,通过综合实验和建模工作有效地去除缺陷来完善石墨烯片。特别是,时间加速建模方法将被开发,以确定缺陷迁移障碍和途径和缺陷缺陷的反应机制下的热和机械负荷。同时,悬浮单层石墨烯器件的拉曼形貌、电输运和低温磁输运的实验测量将在热机械处理之前和之后进行,旨在验证建模方法并评估方法的有效性。为完善石墨烯片而开发的新型热机械方法有望在实现基于石墨烯的下一代电子产品方面取得重大突破。该项目还将有助于促进石墨烯以及其他纳米材料缺陷分析和处理的变革性进展。当与连续介质力学理论相结合时,研究结果将建立新的本构方程,将热机械载荷与缺陷迁移率联系起来,这将对改进现有的石墨烯制造工艺和设计未来的石墨烯材料系统具有价值。在教育方面,拟议的研究将在大学和K-12水平上产生许多机会。宾夕法尼亚州立大学的研究生和本科生将从创新,综合实验操作和计算纳米力学的多学科研究经验中受益匪浅。PI将积极与宾夕法尼亚州立大学的几个组织合作,让包括妇女和少数民族学生在内的代表性不足的群体参与实施拟议的研究计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sulin Zhang其他文献

Foam pad of appropriate thickness can improve diagnostic value of foam posturography in detecting postural instability
适当厚度的泡沫垫可以提高泡沫姿势描记法检测姿势不稳定性的诊断价值
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Bo Liu;Y. Leng;Ren;Jing;Dongdong Liu;Jia Liu;Sulin Zhang;W. Kong
  • 通讯作者:
    W. Kong
Effective coarse-grained simulations of super-thick multi-walled carbon nanotubes under torsion
扭转下超厚多壁碳纳米管的有效粗粒度模拟
  • DOI:
    10.1063/1.3074285
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Jian Zou;X. R. Huang;M. Arroyo;Sulin Zhang
  • 通讯作者:
    Sulin Zhang
Age-related decline in CD8+ tissue resident memory T cells compromises antitumor immunity
与年龄相关的 CD8+组织驻留记忆 T 细胞的减少损害了抗肿瘤免疫力
  • DOI:
    10.1038/s43587-024-00746-5
  • 发表时间:
    2024-11-26
  • 期刊:
  • 影响因子:
    19.400
  • 作者:
    Siyu Pei;Xiuyu Deng;Ruirui Yang;Hui Wang;Jian-Hong Shi;Xueqing Wang;Jia Huang;Yu Tian;Rongjing Wang;Sulin Zhang;Hui Hou;Jing Xu;Qingcheng Zhu;Huan Huang;Jialing Ye;Cong-Yi Wang;Wei Lu;Qingquan Luo;Zhi-Yu Ni;Mingyue Zheng;Yichuan Xiao
  • 通讯作者:
    Yichuan Xiao
Two quantum mechanical/molecular mechanical coupling schemes appropriate for fracture mechanics studies
适用于断裂力学研究的两种量子力学/分子力学耦合方案
  • DOI:
    10.2514/6.2007-2171
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Khare;S. L. Mielke;Jeffrey T. Paci;Sulin Zhang;G. Schatz;T. Belytschko
  • 通讯作者:
    T. Belytschko
Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries
  • DOI:
    10.1038/s41524-017-0009-z
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Sulin Zhang
  • 通讯作者:
    Sulin Zhang

Sulin Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sulin Zhang', 18)}}的其他基金

Collaborative Research: Creep-enabled 3D solid-state Lithium-metal batteries
合作研究:可蠕变的 3D 固态锂金属电池
  • 批准号:
    2034899
  • 财政年份:
    2020
  • 资助金额:
    $ 28.07万
  • 项目类别:
    Standard Grant
Skin-Inspired Mechanics of Liquid Metal - Elastomer Composites as Super Soft, Stretchable, and Tough Conductors
液态金属的皮肤力学 - 弹性体复合材料作为超软、可拉伸和坚韧的导体
  • 批准号:
    1933398
  • 财政年份:
    2019
  • 资助金额:
    $ 28.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Electrochemically driven Mechanical Energy Harvesting
合作研究:电化学驱动的机械能量收集
  • 批准号:
    1610331
  • 财政年份:
    2016
  • 资助金额:
    $ 28.07万
  • 项目类别:
    Standard Grant
Multiscale Modeling of Defect Rearrangement and Removal in 2D Layered Crystals
二维层状晶体中缺陷重排和去除的多尺度建模
  • 批准号:
    1462980
  • 财政年份:
    2015
  • 资助金额:
    $ 28.07万
  • 项目类别:
    Standard Grant
Understanding the Failure Mechanisims of Nanoelectrodes in Li-Ion Batteries: Integrating Multiscale Modeling with In-situ Experimental Studies
了解锂离子电池纳米电极的失效机制:将多尺度建模与原位实验研究相结合
  • 批准号:
    1201058
  • 财政年份:
    2012
  • 资助金额:
    $ 28.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Developing A Complete Membrane-Cytoskeleton Model for Human Erythrocyte
合作研究:开发完整的人类红细胞膜细胞骨架模型
  • 批准号:
    1067523
  • 财政年份:
    2011
  • 资助金额:
    $ 28.07万
  • 项目类别:
    Continuing Grant
CAREER: Multiscale Modeling of Nanoparticle-Cell Interactions
职业:纳米颗粒-细胞相互作用的多尺度建模
  • 批准号:
    0644599
  • 财政年份:
    2007
  • 资助金额:
    $ 28.07万
  • 项目类别:
    Standard Grant
CAREER: Multiscale Modeling of Nanoparticle-Cell Interactions
职业:纳米颗粒-细胞相互作用的多尺度建模
  • 批准号:
    0754463
  • 财政年份:
    2007
  • 资助金额:
    $ 28.07万
  • 项目类别:
    Standard Grant
Multiscale Coarse-Grained Modeling with Experimental Verification of DNA-Carbon Nanotube Complexes
DNA-碳纳米管复合物的多尺度粗粒度建模及实验验证
  • 批准号:
    0826841
  • 财政年份:
    2007
  • 资助金额:
    $ 28.07万
  • 项目类别:
    Standard Grant
Multiscale Coarse-Grained Modeling with Experimental Verification of DNA-Carbon Nanotube Complexes
DNA-碳纳米管复合物的多尺度粗粒度建模及实验验证
  • 批准号:
    0600661
  • 财政年份:
    2006
  • 资助金额:
    $ 28.07万
  • 项目类别:
    Standard Grant

相似海外基金

Observing, Creating and Addressing Topological Spin Textures in a Monolayer XY Magnet
观察、创建和解决单层 XY 磁体中的拓扑自旋纹理
  • 批准号:
    EP/Y023250/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.07万
  • 项目类别:
    Research Grant
Development of Metal Nanoparticle Catalysts Decorated by Inorganic Monolayer Nanosheets and Its Application for Green Chemical Processes
无机单层纳米片修饰金属纳米粒子催化剂的研制及其在绿色化工过程中的应用
  • 批准号:
    23H02005
  • 财政年份:
    2023
  • 资助金额:
    $ 28.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Observing, Creating and Addressing Topological Spin Textures in a Monolayer XY Magnet
观察、创建和解决单层 XY 磁体中的拓扑自旋纹理
  • 批准号:
    2883379
  • 财政年份:
    2023
  • 资助金额:
    $ 28.07万
  • 项目类别:
    Studentship
Realization of kagome-lattice monolayer quantum materials by topotactic reactions of ultrathin films
超薄膜拓扑反应实现戈薇晶格单层量子材料
  • 批准号:
    23H01830
  • 财政年份:
    2023
  • 资助金额:
    $ 28.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Three-dimensional Confocal Microscopy Visualization and AFM-IR Chemical Mapping of Lung Surfactant Monolayer Collapse Morphologies
肺表面活性剂单层塌陷形态的三维共焦显微镜可视化和 AFM-IR 化学图谱
  • 批准号:
    10751972
  • 财政年份:
    2023
  • 资助金额:
    $ 28.07万
  • 项目类别:
Emergent oscillation and ordered structure of active epithelial monolayer induced by topographic landscape
地形景观诱导的活性上皮单层的突现振荡和有序结构
  • 批准号:
    23H01144
  • 财政年份:
    2023
  • 资助金额:
    $ 28.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of stable intermediates for handling by hydrogenation of monolayer germanene
开发用于单层锗烯氢化处理的稳定中间体
  • 批准号:
    23H01811
  • 财政年份:
    2023
  • 资助金额:
    $ 28.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Exciton dynamics in monolayer materials revealed by direct observation of dark exciton states
通过直接观察暗激子态揭示单层材料中的激子动力学
  • 批准号:
    22K20354
  • 财政年份:
    2022
  • 资助金额:
    $ 28.07万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Where 2D meets ML: Defects and Reaction Kinetics at the atomic monolayer limit
2D 与 ML 的结合:原子单层极限下的缺陷和反应动力学
  • 批准号:
    2749169
  • 财政年份:
    2022
  • 资助金额:
    $ 28.07万
  • 项目类别:
    Studentship
CAREER: Probing exciton-exciton correlations and phase transitions for spin-polarized excitons in monolayer transition metal dichalcogenides
职业:探索单层过渡金属二硫化物中自旋极化激子的激子-激子相关性和相变
  • 批准号:
    2142703
  • 财政年份:
    2022
  • 资助金额:
    $ 28.07万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了