Spectral properties of periodic differential operators

周期微分算子的谱性质

基本信息

  • 批准号:
    0901015
  • 负责人:
  • 金额:
    $ 10.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-15 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

The proposed activity will lead to research in different classical as well as modern areas of mathematics and theoretical physics. This research combines powerful apparatus from theory of partial differential equations, complex analysis, Floquet theory and others. Considered subjects are at the interfaces between pure mathematics, theoretical physics and engineering. The proposed activity covers some old and new questions for periodic structures which have a lot of applications in physics and engineering. The methods and constructions are quite intricate and are of great interest for both mathematicians and physicists. Many theoretical and applied problems lead to periodic partial differential equations. For instance, quantum mechanics, hydro-dynamics, elasticity theory, the theory of guided waves, homogenization theory, theory of quantum networks, direct and inverse scattering, parametric resonance theory, spectral theory and spectral geometry, theory of photonic crystals and many others. The proposed research may lead to better understanding of some very important questions in these areas. To summarize, the intellectual merit of the proposed activity is in development of several mathematically rich and classical areas employing original approaches and ideas. The results will likely provide new links between different fields of mathematics and eventually lead to better understanding of the fundamental physical nature of some important processes. The proposed research addresses questions that may clarify many effects and problems important in science and engineering. The prospective results can explain or/and predict some effects which appear in experiments. Obtained improvements of different methods can be applied for investigation of other mathematical and physical problems. Perhaps, the most interesting possible application is the theory of quantum networks which provides the mathematical base for quickly developing engineering of future quantum electronic devices.
拟议的活动将导致在不同的古典以及现代数学和理论物理领域的研究。本研究结合了偏微分方程理论、复分析、Floquet理论等的强大工具。所考虑的科目是在纯数学,理论物理和工程之间的接口。本活动涵盖了周期结构的一些新老问题,这些问题在物理和工程中有着广泛的应用。方法和结构是相当复杂的,是数学家和物理学家的极大兴趣。许多理论和应用问题都涉及到周期偏微分方程。例如,量子力学,流体力学,弹性理论,导波理论,均匀化理论,量子网络理论,直接和逆散射,参数共振理论,光谱理论和光谱几何,光子晶体理论和许多其他理论。拟议的研究可能会导致更好地了解这些领域中的一些非常重要的问题。总而言之,拟议活动的智力价值在于采用原创方法和想法开发几个数学丰富的经典领域。这些结果可能会在不同的数学领域之间提供新的联系,并最终导致更好地理解一些重要过程的基本物理性质。 拟议的研究解决了可能澄清科学和工程中许多重要影响和问题的问题。预期结果可以解释或/和预测实验中出现的一些效应。所得到的各种方法的改进可应用于其它数学物理问题的研究。也许,最有趣的可能应用是量子网络理论,它为未来量子电子设备的快速开发工程提供了数学基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roman Shterenberg其他文献

The almost periodic Gauge Transform: an abstract scheme with applications to Dirac operators
几乎周期性的规范变换:一种应用于狄拉克算子的抽象方案
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jean Lagacé;Sergey Morozov;L. Parnovski;Bernhard Pfirsch;Roman Shterenberg
  • 通讯作者:
    Roman Shterenberg
Perturbative Diagonalization and Spectral Gaps of Quasiperiodic Operators on $$\ell ^2(\mathbb Z^d)$$ with Monotone Potentials
  • DOI:
    10.1007/s00220-025-05280-y
  • 发表时间:
    2025-05-07
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Ilya Kachkovskiy;Leonid Parnovski;Roman Shterenberg
  • 通讯作者:
    Roman Shterenberg

Roman Shterenberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roman Shterenberg', 18)}}的其他基金

Asymptotic Analysis of Almost-Periodic Operators of Quantum Mechanics
量子力学准周期算子的渐近分析
  • 批准号:
    2306327
  • 财政年份:
    2023
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant

相似国自然基金

镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
聚合铁-腐殖酸混凝沉淀-絮凝调质过程中絮体污泥微界面特性和群体流变学的研究
  • 批准号:
    20977008
  • 批准年份:
    2009
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
层状钴基氧化物热电材料的组织取向度与其性能关联规律研究
  • 批准号:
    50702003
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of Relativistic Electronic Structure Approaches for the Calculation of Structural, Mechanical and Spectroscopic Properties of Infinite Periodic Systems
开发用于计算无限周期系统的结构、力学和光谱特性的相对论电子结构方法
  • 批准号:
    545643-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Postdoctoral Fellowships
Fabrication and Mechanical Properties of Electrodeposited Films with Various Periodic High-Composition Gradient Structures
不同周期高成分梯度结构电沉积薄膜的制备及力学性能
  • 批准号:
    22K04729
  • 财政年份:
    2022
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Silicon-based Batteries: Periodic Nanostructuration for enhanced properties
硅基电池:周期性纳米结构可增强性能
  • 批准号:
    RGPIN-2020-04807
  • 财政年份:
    2022
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Discovery Grants Program - Individual
Silicon-based Batteries: Periodic Nanostructuration for enhanced properties
硅基电池:周期性纳米结构可增强性能
  • 批准号:
    RGPIN-2020-04807
  • 财政年份:
    2021
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Relativistic Electronic Structure Approaches for the Calculation of Structural, Mechanical and Spectroscopic Properties of Infinite Periodic Systems
开发用于计算无限周期系统的结构、力学和光谱特性的相对论电子结构方法
  • 批准号:
    545643-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Postdoctoral Fellowships
Development of Relativistic Electronic Structure Approaches for the Calculation of Structural, Mechanical and Spectroscopic Properties of Infinite Periodic Systems
开发用于计算无限周期系统的结构、力学和光谱特性的相对论电子结构方法
  • 批准号:
    545643-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Postdoctoral Fellowships
Silicon-based Batteries: Periodic Nanostructuration for enhanced properties
硅基电池:周期性纳米结构可增强性能
  • 批准号:
    RGPIN-2020-04807
  • 财政年份:
    2020
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Discovery Grants Program - Individual
Fabrication of periodic arrays of dislocations in topological insulators and investigation of their electronic properties
拓扑绝缘体中周期性位错阵列的制作及其电子特性的研究
  • 批准号:
    19K04984
  • 财政年份:
    2019
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
KCNJ2-Induced Arrhythmia Mechanisms in CPVT and Heart Failure.
KCNJ2 诱导 CPVT 和心力衰竭的心律失常机制。
  • 批准号:
    10228058
  • 财政年份:
    2018
  • 资助金额:
    $ 10.02万
  • 项目类别:
KCNJ2-Induced Arrhythmia Mechanisms in CPVT and Heart Failure.
KCNJ2 诱导 CPVT 和心力衰竭的心律失常机制。
  • 批准号:
    9975894
  • 财政年份:
    2018
  • 资助金额:
    $ 10.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了