Bridgeland Moduli of Derived Objects on Algebraic Surfaces

代数曲面上派生对象的布里奇兰模

基本信息

  • 批准号:
    0901128
  • 负责人:
  • 金额:
    $ 22.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-15 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

Coherent sheaves are the bread and butter of algebraic geometry. They are the natural extension of vector bundles to a category that is closed under kernels and cokernels. Their naturality and usefulness was first explored in Serre's landmark paper (FAC). Traditionally, the coherent sheaves on a smooth projective variety are broken down in terms of dimension of support and ``stability'' (Geometric Invariant Theory). However, recent work in string theory points to an entire manifold of stability conditions on categories of complexes of vector bundles (D-branes in the physics literature). These resemble perverse sheaves, and like perverse sheaves seem to have extremely nice properties. In joint work with Daniele Arcara, the PI put stability conditions on a rigorous mathematical footing for all complex surfaces, and in the current proposal he will explore the applications of this new theory to ``classical'' problems in algebraic geometry.Algebraic geometry is the study of the shapes of solution sets of systems of polynomial equations in many variables. One crucial tool in this study is the construction of invariants, i.e. auxiliary structures that allow one to distinguish among the different shapes. Rather surprisingly, string theorists have made very significant contributions to algebraic geometry in recent years. In work relevant to this project, they have proposed the existence of a ``stability manifold'' for ``D-branes,'' which seems to be a very powerful new tool for both distinguishing different shapes and for answering classical questions in algebraic geometry (e.g. How many variables does one need in order to embed a particular shape?) The PI will develop this new tool, building on his previous work explaining the two-dimensional case.
连贯的轮子是代数几何的基本要素。它们是向量丛到一个闭于核和余核之下的范畴的自然扩张。它们的自然性和有用性最初是在Serre的里程碑式的论文(FAC)中探索的。传统上,光滑射影簇上的凝聚层是根据支撑度和“稳定性”(几何不变量理论)来分解的。然而,最近在弦理论方面的工作指出了向量丛(物理学文献中的D-膜)的复形范畴上的完整的稳定性条件。这些看起来像倒立的捆,和倒立的捆一样,似乎有非常好的特性。在与Daniele Arcara的合作中,PI将所有复杂曲面的稳定性条件建立在严格的数学基础上,在当前的建议中,他将探索这一新理论在代数几何中的经典问题上的应用。代数几何是研究多变量多项式方程组的解集的形状的学科。这项研究的一个重要工具是构造不变量,即允许人们区分不同形状的辅助结构。令人惊讶的是,弦理论家近年来对代数几何做出了非常重要的贡献。在与这个项目相关的工作中,他们提出了‘D-膜’的‘’稳定性流形‘’的存在,这似乎是一个非常强大的新工具,既可以区分不同的形状,也可以回答代数几何中的经典问题(例如,一个人需要多少变量才能嵌入一个特定的形状?)PI将在他之前解释二维情况的工作的基础上开发这一新工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aaron Bertram其他文献

An existence theorem for Prym special divisors
  • DOI:
    10.1007/bf01389185
  • 发表时间:
    1987-10-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Aaron Bertram
  • 通讯作者:
    Aaron Bertram
Polynomiality, wall crossings and tropical geometry of rational double Hurwitz cycles
有理双赫尔维茨循环的多项式、穿墙和热带几何
  • DOI:
    10.1016/j.jcta.2013.05.010
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aaron Bertram;Renzo Cavalieri;Hannah Markwig
  • 通讯作者:
    Hannah Markwig

Aaron Bertram的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aaron Bertram', 18)}}的其他基金

FRG: Collaborative Research: Moduli Spaces, Birational Geometry, and Stability Conditions
FRG:协作研究:模空间、双有理几何和稳定性条件
  • 批准号:
    1663813
  • 财政年份:
    2017
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Standard Grant
Support and Mentoring in an Alternative Route to Teaching (SMART)
替代教学途径的支持和指导 (SMART)
  • 批准号:
    0934894
  • 财政年份:
    2009
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Continuing Grant
EMSW21-VIGRE: Vertical Integration in Mathematics at the University of Utah
EMSW21-VIGRE:犹他大学数学垂直整合
  • 批准号:
    0602219
  • 财政年份:
    2006
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Continuing Grant
Algebraic Geometry Inspired by Physics
受物理学启发的代数几何
  • 批准号:
    0501000
  • 财政年份:
    2005
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Continuing Grant
Questions Related to Curves on Complex Projective Manifolds
与复射影流形上的曲线相关的问题
  • 批准号:
    0200895
  • 财政年份:
    2002
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Enumerative Geometry of Moduli Spaces
数学科学:模空间的枚举几何
  • 批准号:
    9500865
  • 财政年份:
    1995
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Topology and Algebraic Geometry
数学科学:拓扑和代数几何
  • 批准号:
    9496103
  • 财政年份:
    1993
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topology and Algebraic Geometry
数学科学:拓扑和代数几何
  • 批准号:
    9218215
  • 财政年份:
    1992
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    8905510
  • 财政年份:
    1989
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Fellowship Award

相似国自然基金

高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题
  • 批准号:
    11271070
  • 批准年份:
    2012
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-BSF: Derived and quantum corrected structures on arithmetic and geometric moduli
NSF-BSF:算术和几何模量的导出和量子校正结构
  • 批准号:
    2200914
  • 财政年份:
    2022
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
  • 批准号:
    2052936
  • 财政年份:
    2021
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
  • 批准号:
    2052750
  • 财政年份:
    2021
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
  • 批准号:
    2052934
  • 财政年份:
    2021
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
  • 批准号:
    2052665
  • 财政年份:
    2021
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Continuing Grant
The derived geometry of moduli spaces
模空间的导出几何
  • 批准号:
    2443002
  • 财政年份:
    2020
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Studentship
CAREER: Moduli Spaces and Derived Categories
职业:模空间和派生范畴
  • 批准号:
    1945478
  • 财政年份:
    2020
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Continuing Grant
Interactions of Derived Moduli Spaces and Gerbes with Elliptic Genera in Complex Geometry
复杂几何中导出模空间和Gerbes与椭圆属的相互作用
  • 批准号:
    376202359
  • 财政年份:
    2017
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Research Fellowships
Period map of the moduli space of categories and derived geometry
类别模空间周期图和导出几何
  • 批准号:
    17K14150
  • 财政年份:
    2017
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Moduli Spaces, Derived Categories, and Motives
模空间、派生范畴和动机
  • 批准号:
    1601940
  • 财政年份:
    2016
  • 资助金额:
    $ 22.29万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了