Bridgeland Moduli of Derived Objects on Algebraic Surfaces
代数曲面上派生对象的布里奇兰模
基本信息
- 批准号:0901128
- 负责人:
- 金额:$ 22.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Coherent sheaves are the bread and butter of algebraic geometry. They are the natural extension of vector bundles to a category that is closed under kernels and cokernels. Their naturality and usefulness was first explored in Serre's landmark paper (FAC). Traditionally, the coherent sheaves on a smooth projective variety are broken down in terms of dimension of support and ``stability'' (Geometric Invariant Theory). However, recent work in string theory points to an entire manifold of stability conditions on categories of complexes of vector bundles (D-branes in the physics literature). These resemble perverse sheaves, and like perverse sheaves seem to have extremely nice properties. In joint work with Daniele Arcara, the PI put stability conditions on a rigorous mathematical footing for all complex surfaces, and in the current proposal he will explore the applications of this new theory to ``classical'' problems in algebraic geometry.Algebraic geometry is the study of the shapes of solution sets of systems of polynomial equations in many variables. One crucial tool in this study is the construction of invariants, i.e. auxiliary structures that allow one to distinguish among the different shapes. Rather surprisingly, string theorists have made very significant contributions to algebraic geometry in recent years. In work relevant to this project, they have proposed the existence of a ``stability manifold'' for ``D-branes,'' which seems to be a very powerful new tool for both distinguishing different shapes and for answering classical questions in algebraic geometry (e.g. How many variables does one need in order to embed a particular shape?) The PI will develop this new tool, building on his previous work explaining the two-dimensional case.
连贯的滑轮是代数几何形状的面包和黄油。它们是向量捆绑包的自然扩展到在内核和焦点下关闭的类别。它们的自然性和实用性首先在Serre的地标纸(FAC)中探索。传统上,光滑的投影型品种上的连贯滑轮在支撑和``稳定性''(几何不变理论)方面被分解。然而,弦理论中的最新工作表明了稳定条件的整个多种形式,这是矢量束的复合物类别(物理文献中的D-溴)。这些类似于不正当的滑轮,并且像不正正的滑轮似乎具有非常好的特性。在与Daniele Arcara的联合合作中,PI将稳定条件置于所有复杂表面的严格数学基础上,在当前的建议中,他将探讨该新理论在代数几何形状中``经典''问题的应用。algebebraic几何形状是对多元素型系统的溶液集合的研究。这项研究中的一种关键工具是构造不变性,即辅助结构,可以区分不同形状。令人惊讶的是,近年来,弦理论家为代数几何形状做出了非常重要的贡献。在与该项目相关的工作中,他们提出了``d-branes''的存在``稳定性歧管'',这似乎是一个非常有力的新工具,可以区分不同的形状,并且可以在代数几何形状中区分经典问题,例如,在代数几何形状中,有多少次数可以启动per new the emper new suff the empers emper new shew shew shew shew shew shew shew there new nek and and emper nek and and emper nek nek and efors nek nek and efor new the nook?) 案件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Bertram其他文献
Polynomiality, wall crossings and tropical geometry of rational double Hurwitz cycles
有理双赫尔维茨循环的多项式、穿墙和热带几何
- DOI:
10.1016/j.jcta.2013.05.010 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Aaron Bertram;Renzo Cavalieri;Hannah Markwig - 通讯作者:
Hannah Markwig
Aaron Bertram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Bertram', 18)}}的其他基金
FRG: Collaborative Research: Moduli Spaces, Birational Geometry, and Stability Conditions
FRG:协作研究:模空间、双有理几何和稳定性条件
- 批准号:
1663813 - 财政年份:2017
- 资助金额:
$ 22.29万 - 项目类别:
Standard Grant
Support and Mentoring in an Alternative Route to Teaching (SMART)
替代教学途径的支持和指导 (SMART)
- 批准号:
0934894 - 财政年份:2009
- 资助金额:
$ 22.29万 - 项目类别:
Continuing Grant
EMSW21-VIGRE: Vertical Integration in Mathematics at the University of Utah
EMSW21-VIGRE:犹他大学数学垂直整合
- 批准号:
0602219 - 财政年份:2006
- 资助金额:
$ 22.29万 - 项目类别:
Continuing Grant
Algebraic Geometry Inspired by Physics
受物理学启发的代数几何
- 批准号:
0501000 - 财政年份:2005
- 资助金额:
$ 22.29万 - 项目类别:
Continuing Grant
Questions Related to Curves on Complex Projective Manifolds
与复射影流形上的曲线相关的问题
- 批准号:
0200895 - 财政年份:2002
- 资助金额:
$ 22.29万 - 项目类别:
Continuing Grant
Mathematical Sciences: Enumerative Geometry of Moduli Spaces
数学科学:模空间的枚举几何
- 批准号:
9500865 - 财政年份:1995
- 资助金额:
$ 22.29万 - 项目类别:
Standard Grant
Mathematical Sciences: Topology and Algebraic Geometry
数学科学:拓扑和代数几何
- 批准号:
9496103 - 财政年份:1993
- 资助金额:
$ 22.29万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topology and Algebraic Geometry
数学科学:拓扑和代数几何
- 批准号:
9218215 - 财政年份:1992
- 资助金额:
$ 22.29万 - 项目类别:
Continuing Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
8905510 - 财政年份:1989
- 资助金额:
$ 22.29万 - 项目类别:
Fellowship Award
相似国自然基金
碳纤维/树脂复合材料模量匹配与梯度界面的协同效应及强韧化机制研究
- 批准号:52373080
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于丝素蛋白多孔凝胶的低模量柔性脑电极研究
- 批准号:62301555
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高模量高塑性(CNTs+AlN)/AZ91复合材料的制备及性能调控机理研究
- 批准号:52301198
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑颗粒特征的粗粒土初始剪切模量宏细观分析及混合驱动模型研究
- 批准号:52309173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高回弹高模量耐疲劳离子皮肤的结构和性能研究
- 批准号:22305033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
NSF-BSF: Derived and quantum corrected structures on arithmetic and geometric moduli
NSF-BSF:算术和几何模量的导出和量子校正结构
- 批准号:
2200914 - 财政年份:2022
- 资助金额:
$ 22.29万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
- 批准号:
2052936 - 财政年份:2021
- 资助金额:
$ 22.29万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
- 批准号:
2052750 - 财政年份:2021
- 资助金额:
$ 22.29万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
- 批准号:
2052934 - 财政年份:2021
- 资助金额:
$ 22.29万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
- 批准号:
2052665 - 财政年份:2021
- 资助金额:
$ 22.29万 - 项目类别:
Continuing Grant