Questions Related to Curves on Complex Projective Manifolds
与复射影流形上的曲线相关的问题
基本信息
- 批准号:0200895
- 负责人:
- 金额:$ 21.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this project is to further the understanding of thebehavior of families of complex curves on a complex projective manifold X.This will be done by addressing both enumerative questions (e.g. How may curves are there with given degree and genus and incidences?) and deformation-theoretic questions(e.g. What deformations of curves lie in a generic deformation of X?). Some of the important tools for attacking such questions include the Atiyah-Bott localization theorem and Kuranishi's formal deformationtheory. In addition to the research component,the investigators will restart the successful WAGS(Western Algebraic Geometry) conferences.This research relates to counting problems. For example, given the set of solutions of a polynomial equation in several variables, how many objects of a certain type (e.g. lines) lie entirely inside the solution set? We further study the 'shape' of the collection of objects even in cases in which that collection of objects is no longer finite. This research is related to a celebrated modern theory in physics, called 'string theory,' which proposes to resolve the problem of unifying the fundamental forces of nature by slightly 'thickening' space-time in six independent directions. Our research studies the geometry of the (tiny) cross-section of the universe in those six new directions.
这个项目的目的是加深对复射影流形X上的复曲线族的行为的理解。这将通过解决两个列举问题来完成(例如,如何存在具有给定的次数、亏格和偶然性的曲线?)以及变形理论问题(例如,曲线的哪些变形存在于X的一般变形中?)。攻击这类问题的一些重要工具包括Atiyah-Bott局部化定理和Kuranishi的形式变形理论。除了研究部分,调查人员将重新启动成功的WAGS(西方代数几何)会议。这项研究与计数问题有关。例如,给出一个多变量多项式方程的解集,有多少特定类型的对象(如直线)完全位于该解集内?我们进一步研究对象集合的“形状”,即使在对象集合不再是有限的情况下也是如此。这项研究与现代物理学中一种著名的理论--弦理论有关,该理论提出通过在六个独立方向上略微加厚时空来解决统一自然基本力的问题。我们的研究从这六个新的方向研究了宇宙(微小的)横截面的几何学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Bertram其他文献
An existence theorem for Prym special divisors
- DOI:
10.1007/bf01389185 - 发表时间:
1987-10-01 - 期刊:
- 影响因子:3.600
- 作者:
Aaron Bertram - 通讯作者:
Aaron Bertram
Polynomiality, wall crossings and tropical geometry of rational double Hurwitz cycles
有理双赫尔维茨循环的多项式、穿墙和热带几何
- DOI:
10.1016/j.jcta.2013.05.010 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Aaron Bertram;Renzo Cavalieri;Hannah Markwig - 通讯作者:
Hannah Markwig
Aaron Bertram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Bertram', 18)}}的其他基金
FRG: Collaborative Research: Moduli Spaces, Birational Geometry, and Stability Conditions
FRG:协作研究:模空间、双有理几何和稳定性条件
- 批准号:
1663813 - 财政年份:2017
- 资助金额:
$ 21.85万 - 项目类别:
Standard Grant
Bridgeland Moduli of Derived Objects on Algebraic Surfaces
代数曲面上派生对象的布里奇兰模
- 批准号:
0901128 - 财政年份:2009
- 资助金额:
$ 21.85万 - 项目类别:
Continuing Grant
Support and Mentoring in an Alternative Route to Teaching (SMART)
替代教学途径的支持和指导 (SMART)
- 批准号:
0934894 - 财政年份:2009
- 资助金额:
$ 21.85万 - 项目类别:
Continuing Grant
EMSW21-VIGRE: Vertical Integration in Mathematics at the University of Utah
EMSW21-VIGRE:犹他大学数学垂直整合
- 批准号:
0602219 - 财政年份:2006
- 资助金额:
$ 21.85万 - 项目类别:
Continuing Grant
Algebraic Geometry Inspired by Physics
受物理学启发的代数几何
- 批准号:
0501000 - 财政年份:2005
- 资助金额:
$ 21.85万 - 项目类别:
Continuing Grant
Mathematical Sciences: Enumerative Geometry of Moduli Spaces
数学科学:模空间的枚举几何
- 批准号:
9500865 - 财政年份:1995
- 资助金额:
$ 21.85万 - 项目类别:
Standard Grant
Mathematical Sciences: Topology and Algebraic Geometry
数学科学:拓扑和代数几何
- 批准号:
9496103 - 财政年份:1993
- 资助金额:
$ 21.85万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topology and Algebraic Geometry
数学科学:拓扑和代数几何
- 批准号:
9218215 - 财政年份:1992
- 资助金额:
$ 21.85万 - 项目类别:
Continuing Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
8905510 - 财政年份:1989
- 资助金额:
$ 21.85万 - 项目类别:
Fellowship Award
相似国自然基金
Brahma related gene 1/Lamin B1通路在糖尿病肾脏疾病肾小管上皮细胞衰老中的作用
- 批准号:
- 批准年份:2021
- 资助金额:10.0 万元
- 项目类别:省市级项目
植物RETINOBLASTOMA-RELATED (RBR)蛋白网络调控根尖干细胞损伤修复的分子机制
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:
C1q/TNF-related protein 9调控平滑肌细胞程序性坏死抑制动脉粥样硬化的机制研究
- 批准号:81900309
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
降钙素基因相关肽(Calcitonin gene-related peptide, CGRP)对穴位敏化的调节及机制研究
- 批准号:81873385
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
C1q/TNF-related protein-3在银屑病代谢紊乱中的作用及机制研究
- 批准号:81402620
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Interdisciplinary research of arithmetic geometry and quantum field theory related to the moduli space of hyperbolic curves
双曲曲线模空间相关的算术几何与量子场论的跨学科研究
- 批准号:
18K13385 - 财政年份:2018
- 资助金额:
$ 21.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Homotopy types of spaces of rational curves on a toric manifold and related geometry
复曲面流形上有理曲线空间的同伦类型及相关几何
- 批准号:
18K03295 - 财政年份:2018
- 资助金额:
$ 21.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic geometry related to the rigidity of hyperbolic algebraic curves
与双曲代数曲线刚性相关的算术几何
- 批准号:
18K03239 - 财政年份:2018
- 资助金额:
$ 21.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Families of algebraic curves with CM, multiple gamma functions, Stark conjecture and related number-theoretic problems
CM 代数曲线族、多重伽玛函数、斯塔克猜想和相关数论问题
- 批准号:
17K05183 - 财政年份:2017
- 资助金额:
$ 21.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on invariants of fibrations of curves and multidimensional continued fractions related to singularities
曲线纤维振动不变量和与奇点相关的多维连续分数的研究
- 批准号:
16K05104 - 财政年份:2016
- 资助金额:
$ 21.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic of hyperbolic algebraic curves related to arithmetic fundamental groups
与算术基本群相关的双曲代数曲线的算术
- 批准号:
15K04780 - 财政年份:2015
- 资助金额:
$ 21.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Problems in Euclidean harmonic analysis related to the geometry of curves and surfaces
与曲线和曲面几何相关的欧几里得调和分析问题
- 批准号:
230032422 - 财政年份:2013
- 资助金额:
$ 21.85万 - 项目类别:
Research Grants
Rational points and integer points on elliptic curves and the related Diophantine equations
椭圆曲线上的有理点和整数点以及相关的丢番图方程
- 批准号:
25400025 - 财政年份:2013
- 资助金额:
$ 21.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rank of elliptic curves and other related problems
椭圆曲线的秩及其他相关问题
- 批准号:
409200-2011 - 财政年份:2011
- 资助金额:
$ 21.85万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Difference equations related with higher genus algebraic curves
与更高属代数曲线相关的差分方程
- 批准号:
23540245 - 财政年份:2011
- 资助金额:
$ 21.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)