Unipotent Representations and Automorphic Forms
单能表示和自同构形式
基本信息
- 批准号:0901104
- 负责人:
- 金额:$ 34.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractBarbaschThere are two major themes in this proposal, the determination of the unitary dual, and the structure of unipotent representations. Barbasch will continue and extend his previous work to find necessary and sufficient conditions for unitarity for classes of Langlands parameters such as principal series in real and p-adic groups. The aim is to find proofs that are as uniform and conceptual as possible, and express the answers in a closed form. Unipotent representations are (conjectured to be) the building blocks of the unitary dual. Their character theory plays an important role in the theory of automorphic forms. Barbasch will study the character theory of unipotent representations in the real case, with an emphasis on relations to endoscopic groups, particularly twisted ones. Realizations of unipotent representations as local factors of automorphic forms, and in the context of the dual pairs correspondence are also envisioned. This research will provide a deeper understanding of representation theory of reductive Lie groups, in particular unitary representations, which play an essential role in the applications of representation theory to automorphic forms, mathematical physics analysis and geometry. This research will generate problems suitable for Ph.D. theses as well as combinatorial problems for undergraduate research. Together with several faculty members at Cornell, Barbasch will run the ``Sophus Lie Days at Cornell'' an instructional conference designed to expose undergraduates and graduate students in mathematics and other sciences to the theory of Lie groups and their representations, one of the aims being to get them interested and involved in research at an early stage. The results of this research will be disseminated through research papers, talks at seminars and conferences, and various web sites.
Barbasch这一提议有两个主要主题,一个是酉对偶的确定,另一个是幂等表示的结构。Barbasch将继续和推广他以前的工作,以找到实群和p-ady群中的主级数等朗兰兹参数类具有唯一性的充要条件。其目的是找到尽可能统一和概念性的证据,并以封闭的形式表达答案。幂等表示是(猜想是)酉对偶的积木。他们的特征理论在自同构形理论中占有重要地位。Barbasch将研究真实情况下的幂等表示的特征标理论,重点是与内窥镜群,特别是扭曲群的关系。还设想了在对偶对对应的情况下,将幂等表示实现为自同构形式的局部因子。这一研究将加深对约化李群的表示理论,特别是么正表示的理解,它在表示理论在自同构形式、数学物理分析和几何中的应用中起着至关重要的作用。这项研究将产生适合于博士论文的问题,以及适合本科生研究的组合问题。Barbasch将与康奈尔大学的几名教职员工一起举办“康奈尔大学的Sophus Lie Day”教学会议,旨在让数学和其他科学的本科生和研究生了解李群理论及其表示,目的之一是让他们对早期阶段的研究感兴趣并参与到研究中来。这项研究的结果将通过研究论文、研讨会和会议上的演讲以及各种网站进行传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dan Barbasch其他文献
Dirac series for complex classical Lie groups: A multiplicity-one theorem
复杂经典李群的狄拉克级数:重一定理
- DOI:
10.1016/j.aim.2022.108370 - 发表时间:
2020-10 - 期刊:
- 影响因子:1.7
- 作者:
Dan Barbasch;Chao-Ping Dong;Kayue Daniel Wong - 通讯作者:
Kayue Daniel Wong
Special Unipotent Representations of Simple Linear Lie Groups of Type A
A 型单线性李群的特殊幺幂表示
- DOI:
10.1007/s10114-024-3206-y - 发表时间:
2024-03-15 - 期刊:
- 影响因子:0.900
- 作者:
Dan Barbasch;Jia Jun Ma;Bin Yong Sun;Chen Bo Zhu - 通讯作者:
Chen Bo Zhu
Dan Barbasch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dan Barbasch', 18)}}的其他基金
Unipotent Representations and Associated Cycles
单能表示和相关循环
- 批准号:
2000254 - 财政年份:2020
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Atlas of Lie Groups and Representations: Unitary Representations
FRG:协作研究:李群和表示图集:酉表示
- 批准号:
0967386 - 财政年份:2010
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
Mathematical Sciences: Unipotent Representations for Reductive Groups
数学科学:还原群的单能表示
- 批准号:
8803500 - 财政年份:1988
- 资助金额:
$ 34.19万 - 项目类别:
Continuing Grant
Mathematical Sciences: Unipotent Representations and the Unity Dual of Reductive Groups
数学科学:单能表示和还原群的统一对偶
- 批准号:
8603172 - 财政年份:1986
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
Mathematical Sciences: The Orbit Method for Semisimple Lie Groups: Character Theory for Unipotent Representations of Complex and Real Semisimple Lie Groups
数学科学:半简单李群的轨道方法:复杂和实半简单李群的单能表示的特征理论
- 批准号:
8402701 - 财政年份:1984
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
The Orbit Method For Semisimple Lie Groups
半单李群的轨道法
- 批准号:
8003075 - 财政年份:1980
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347096 - 财政年份:2024
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347095 - 财政年份:2024
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347097 - 财政年份:2024
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
Representations of Kac-Moody Groups and Applications to Automorphic Forms
Kac-Moody 群的表示及其在自守形式中的应用
- 批准号:
RGPIN-2019-06112 - 财政年份:2022
- 资助金额:
$ 34.19万 - 项目类别:
Discovery Grants Program - Individual
Congruences of automorphic forms and Galois representations
自守形式和伽罗瓦表示的同余
- 批准号:
2745671 - 财政年份:2022
- 资助金额:
$ 34.19万 - 项目类别:
Studentship
Distribution of Hecke eigenvalues for automorphic representations
自守表示的 Hecke 特征值分布
- 批准号:
RGPIN-2021-03032 - 财政年份:2022
- 资助金额:
$ 34.19万 - 项目类别:
Discovery Grants Program - Individual
Invariant Theory, Moduli Space, and Automorphic Representations
不变理论、模空间和自同构表示
- 批准号:
2201314 - 财政年份:2022
- 资助金额:
$ 34.19万 - 项目类别:
Continuing Grant
Automorphic Representations and L-Functions
自守表示和 L 函数
- 批准号:
2200890 - 财政年份:2022
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
Representations of Kac-Moody Groups and Applications to Automorphic Forms
Kac-Moody 群的表示及其在自守形式中的应用
- 批准号:
RGPIN-2019-06112 - 财政年份:2021
- 资助金额:
$ 34.19万 - 项目类别:
Discovery Grants Program - Individual
Distribution of Hecke eigenvalues for automorphic representations
自守表示的 Hecke 特征值分布
- 批准号:
DGECR-2021-00121 - 财政年份:2021
- 资助金额:
$ 34.19万 - 项目类别:
Discovery Launch Supplement














{{item.name}}会员




