Unipotent Representations and Associated Cycles

单能表示和相关循环

基本信息

  • 批准号:
    2000254
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Laws of nature, in particularly those of physics, satisfy basic symmetries. In mathematical language, these symmetries are most often expressed in terms of Lie groups and their representations (named after Sophus Lie, a 19th century mathematician who pioneered these concepts in his study of solutions of differential equations). This project is concerned with properties of unitary representations. The modern study of unitary representations stems from quantum physics. In addition, they play a crucial role in many other applications such as tomography, crystallography, and signal processing.In more technical terms, this project is focused on properties of unipotent representations, which are the building blocks of the unitary duals of real and p-adic reductive groups. The determination of the unitary dual is a major problem in the representation theory of such groups. The PI will formulate and sharpen conjectures on the signatures of hermitian forms for modules of the affine Hecke algebra. These are essential for the determination of the unitary duals of p-adic groups. Another focus of this project is to make explicit the role of unipotent representations in the description of the unitary dual. In addition to linear groups, the PI will study these notions for nonlinear and disconnected groups that arise in mathematical physics and in the study of automorphic forms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自然规律,特别是物理规律,满足基本的对称性。在数学语言中,这些对称性通常用李群及其表示来表达(以Sophus Lie命名,Sophus Lie是一位世纪数学家,他在研究微分方程的解时开创了这些概念)。这个项目关注酉表示的性质。对幺正表示的现代研究起源于量子物理学。此外,它们在许多其他应用中发挥着至关重要的作用,如层析成像,晶体学和信号处理。在更专业的术语中,该项目专注于幂幺表示的性质,这是真实的和p-adic约化群的酉群的构建块。确定酉对偶是这类群的表示论中的一个主要问题。PI将制定和锐化仿射Hecke代数的模的埃尔米特形式的签名。这些对于确定p-adic群的酉群是必不可少的。这个项目的另一个重点是明确的作用,幂幺表示在描述的酉对偶。除了线性群之外,PI还将研究数学物理和自守形式研究中出现的非线性和断开群的概念。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
STAR OPERATIONS FOR AFFINE HECKE ALGEBRAS
仿射赫克代数的星运算
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dan Barbasch其他文献

Dirac series for complex classical Lie groups: A multiplicity-one theorem
复杂经典李群的狄拉克级数:重一定理
  • DOI:
    10.1016/j.aim.2022.108370
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Dan Barbasch;Chao-Ping Dong;Kayue Daniel Wong
  • 通讯作者:
    Kayue Daniel Wong
Special Unipotent Representations of Simple Linear Lie Groups of Type A
A 型单线性李群的特殊幺幂表示
  • DOI:
    10.1007/s10114-024-3206-y
  • 发表时间:
    2024-03-15
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Dan Barbasch;Jia Jun Ma;Bin Yong Sun;Chen Bo Zhu
  • 通讯作者:
    Chen Bo Zhu

Dan Barbasch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dan Barbasch', 18)}}的其他基金

FRG: Collaborative Research: Atlas of Lie Groups and Representations: Unitary Representations
FRG:协作研究:李群和表示图集:酉表示
  • 批准号:
    0967386
  • 财政年份:
    2010
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Unipotent Representations and Automorphic Forms
单能表示和自同构形式
  • 批准号:
    0901104
  • 财政年份:
    2009
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Unipotent Representations for Reductive Groups
数学科学:还原群的单能表示
  • 批准号:
    8803500
  • 财政年份:
    1988
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Unipotent Representations and the Unity Dual of Reductive Groups
数学科学:单能表示和还原群的统一对偶
  • 批准号:
    8603172
  • 财政年份:
    1986
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Mathematical Sciences: The Orbit Method for Semisimple Lie Groups: Character Theory for Unipotent Representations of Complex and Real Semisimple Lie Groups
数学科学:半简单李群的轨道方法:复杂和实半简单李群的单能表示的特征理论
  • 批准号:
    8402701
  • 财政年份:
    1984
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
The Orbit Method For Semisimple Lie Groups
半单李群的轨道法
  • 批准号:
    8003075
  • 财政年份:
    1980
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似海外基金

Analytic research on branching law of infinite-dimensional representations associated with symmetric R spaces
对称R空间无限维表示分支规律的解析研究
  • 批准号:
    20J00114
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Representations of multiplier algebras associated to locally compact quantum groups
与局部紧量子群相关的乘子代数的表示
  • 批准号:
    503989-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 18万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Representations of multiplier algebras associated to locally compact quantum groups
与局部紧量子群相关的乘子代数的表示
  • 批准号:
    503989-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 18万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Nilpotent subgroup complexes of finite groups and associated quiver representations
有限群的幂零子群复形及相关箭袋表示
  • 批准号:
    17K05161
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representations of multiplier algebras associated to locally compact quantum groups
与局部紧量子群相关的乘子代数的表示
  • 批准号:
    503989-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Representations of arithmetic groups and their associated zeta functions
算术群及其相关 zeta 函数的表示
  • 批准号:
    FT160100018
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    ARC Future Fellowships
Characterizations of Galois representations associated to Hilbert modular forms
与希尔伯特模形式相关的伽罗瓦表示的特征
  • 批准号:
    17H07074
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Number theory for representations of algebraic groups and associated zeta functions
代数群和相关 zeta 函数表示的数论
  • 批准号:
    25707002
  • 财政年份:
    2013
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Research on density estimates for exceptional sets associated with additive representations of natural numbers
与自然数的加性表示相关的异常集的密度估计研究
  • 批准号:
    17540004
  • 财政年份:
    2005
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Harmonic analysis on solvable Lie groups associated with constructions of induced representations
与诱导表示构造相关的可解李群的调和分析
  • 批准号:
    15540171
  • 财政年份:
    2003
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了