Divergence-measure fields and the structure of solutions of systems of hyperbolic conservation laws

双曲守恒定律系统的散度测度场和解的结构

基本信息

  • 批准号:
    0901245
  • 负责人:
  • 金额:
    $ 13.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

The study of multidimensional conservation laws, for both scalar and systems of equations, is currently the subject of broad research efforts. Though significant progress has been made in the case of multidimensional scalar conservation laws, there is currently no general theory for multidimensional systems of hyperbolic conservation laws. One of the main difficulties is that solutions can develop singularities in finite time, regardless of the smoothness of the initial data. These singularities are known as shock waves. For the strictly hyperbolic one-dimensional system, it can be shown that if the initial data has sufficiently small total variation, then there exists a global entropy solution in the space of functions of bounded variation. However, solutions of conservation laws are not in general functions of bounded variation. Moreover, it has been shown that the space of functions of bounded variation is mathematically insufficient for describing solutions of multidimensional systems of conservation laws. These shortcomings in the state-of-the-art theory for systems of conservation laws have motivated the principal investigator to develop a theory for divergence-measure fields. Divergence-measure fields provide a more general framework for characterizing solutions of systems of conservation laws. The principal investigator conjectures that solutions of systems of conservation laws have a special structure, in the sense that the shock waves are supported on a codimension-one rectifiable set where the solution has strong traces. Outside the shock waves, the solution is conjectured to be approximately continuous. This project will investigate these questions by analyzing the blow-up limits of the rescalings of the solution directly on the equation given by the entropy inequality. This plan hinges on the analysis of divergence-measure fields in that the existence of strong traces of the solution are related to the existence of weak normal traces of divergence-measure fields. Moreover, the analysis of divergence-measure fields provides information on the entropy dissipation measures. The project will also explore the structure of solutions to degenerate parabolic-hyperbolic equations, for they relate to divergence-measure fields in the same fashion as the solutions of hyperbolic conservation laws.Conservation laws and their associated vector fields govern physical processes from broad scientific disciplines, including fluid mechanics, solid mechanics, acoustics, chemistry, and electromagnetism. Shock waves are ubiquitous in physical systems, occurring in aerodynamics, biological systems, and chemical processes, yet their mathematical structure is not well understood. The analysis of the structure of solutions of systems of hyperbolic conservation laws will open new doors to the understanding of shock waves. The analysis of the space of divergence-measure fields, which is larger than the space of so-called bounded variation vector fields and is the focal point of this project, will provide new tools to research other equations where "weakly differentiable vector fields" appear. The research plans of this proposal are tightly integrated with the mentoring of graduate students and cross-collaborations. This will encourage research dissemination through collaboration among students, postdocs, and faculty who will be interacting with the principal investigator. She will also integrate her research plan with activities intended to broaden the participation of underrepresented groups, as she has done in the past.
多维守恒定律的研究,包括标量守恒律和方程组,目前是广泛研究的主题。虽然多维标量守恒律的研究已经取得了很大的进展,但目前还没有关于多维双曲守恒律系统的一般理论。主要的困难之一是,无论初始数据的平稳性如何,解都可能在有限的时间内产生奇点。这些奇点被称为冲击波。对于一维严格双曲系统,证明了如果初始数据具有足够小的全变差,则在有界变差函数空间中存在整体熵解。然而,守恒律的解不是有界变差的一般函数。此外,还证明了有界变差函数空间在数学上不足以描述多维守恒律系统的解。守恒定律体系的最新理论中的这些缺陷促使首席研究者发展了散度度量场的理论。散度度量场为刻画守恒律系统的解提供了一个更一般的框架。主要研究者猜想守恒律组的解有一种特殊的结构,在这个意义上,激波被支撑在一个余维上--一个解有很强踪迹的可纠正集。在激波之外,解被推测为近似连续的。这个项目将通过分析解的重标度的爆破极限来研究这些问题,该解直接在由熵不等给出的方程上。这个计划取决于散度度量场的分析,因为解的强迹的存在与散度度量场的弱法迹的存在有关。此外,散度度量场的分析还提供了有关熵耗散度量的信息。该项目还将探索退化抛物-双曲方程解的结构,因为它们与散度度量场的关系与双曲守恒定律的解的方式相同。守恒定律及其相关的矢量场支配着广泛科学学科的物理过程,包括流体力学、固体力学、声学、化学和电磁学。冲击波在物理系统中普遍存在,出现在空气动力学、生物系统和化学过程中,但其数学结构尚不清楚。分析双曲守恒律组的解的结构将为理解激波打开新的大门。散度度量场的空间比所谓的有界变差向量场空间大,是本课题的重点,它的分析将为研究其他出现“弱可微向量场”的方程提供新的工具。这项建议的研究计划与研究生的指导和交叉合作紧密结合。这将通过学生、博士后和教职员工之间的合作来鼓励研究传播,他们将与首席研究员互动。她还将把她的研究计划与旨在扩大代表性不足群体的参与的活动结合起来,就像她过去所做的那样。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Monica Torres其他文献

Metabolic Reprogramming and Reliance in Human Skin Wound Healing
人类皮肤伤口愈合中的代谢重编程与依赖
  • DOI:
    10.1016/j.jid.2023.02.039
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Mansi Manchanda;Monica Torres;Farydah Inuossa;Ritu Bansal;Rahul Kumar;Matthew Hunt;Craig E. Wheelock;Etty Bachar-Wikstrom;Jakob D. Wikstrom
  • 通讯作者:
    Jakob D. Wikstrom
Beyond the skin: endocrine, psychological and nutritional aspects in women with hidradenitis suppurativa
  • DOI:
    10.1186/s12967-025-06175-1
  • 发表时间:
    2025-02-10
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Anna Dattolo;Monica Torres;Evelyn Frias-Toral;Alessia Paganelli;Mariana Zhang;Stefania Madonna;Laura Mercurio;Gabriela Cucalón;Federico Garbarino;Cristina Albanesi;Emanuele Scala
  • 通讯作者:
    Emanuele Scala
Cellular and molecular roles of reactive oxygen species in wound healing
活性氧在伤口愈合中的细胞和分子作用
  • DOI:
    10.1038/s42003-024-07219-w
  • 发表时间:
    2024-11-19
  • 期刊:
  • 影响因子:
    5.100
  • 作者:
    Matthew Hunt;Monica Torres;Etty Bachar-Wikstrom;Jakob D. Wikstrom
  • 通讯作者:
    Jakob D. Wikstrom
The Temporal Dynamics of Proteins in Aged Skin Wound Healing and Comparison with Gene Expression
衰老皮肤伤口愈合中蛋白质的时间动态及其与基因表达的比较
  • DOI:
    10.1016/j.jid.2024.09.024
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Monica Torres;Gilad Silberberg;Akos Vegvari;Roman A. Zubarev;Matthew Hunt;Ritu Bansal;Etty Bachar-Wikstrom;Jakob D. Wikstrom
  • 通讯作者:
    Jakob D. Wikstrom
Impaired HDL (High-Density Lipoprotein)-Mediated Macrophage Cholesterol Efflux in Patients With Abdominal Aortic Aneurysm—Brief Report
腹主动脉瘤患者 HDL(高密度脂蛋白)介导的巨噬细胞胆固醇流出受损 - 简要报告
  • DOI:
    10.1161/atvbaha.118.311704
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Martínez;L. Cedó;J. Metso;E. Burillo;A. García;Marina Canyelles;J. Lindholt;Monica Torres;L. Blanco;Jesús Vázquez;F. Blanco;M. Jauhiainen;J. Martín;J. Escolà
  • 通讯作者:
    J. Escolà

Monica Torres的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Monica Torres', 18)}}的其他基金

Geometric Measure Theory, Image Processing, and Nonlinear Partial Differential Equations
几何测度理论、图像处理和非线性偏微分方程
  • 批准号:
    1813695
  • 财政年份:
    2018
  • 资助金额:
    $ 13.86万
  • 项目类别:
    Standard Grant
Midwest Women in Mathematics Symposium
中西部女性数学研讨会
  • 批准号:
    1740959
  • 财政年份:
    2017
  • 资助金额:
    $ 13.86万
  • 项目类别:
    Standard Grant
Divergence-Measure Fields and Nonlinear Conservation Laws
散度测度场和非线性守恒定律
  • 批准号:
    0501021
  • 财政年份:
    2005
  • 资助金额:
    $ 13.86万
  • 项目类别:
    Standard Grant
Divergence-Measure Fields and Nonlinear Conservation Laws
散度测度场和非线性守恒定律
  • 批准号:
    0540869
  • 财政年份:
    2005
  • 资助金额:
    $ 13.86万
  • 项目类别:
    Standard Grant
NSF Minority Postdoctoral Research Fellowship for FY-1999
1999 财年 NSF 少数族裔博士后研究奖学金
  • 批准号:
    9904163
  • 财政年份:
    1999
  • 资助金额:
    $ 13.86万
  • 项目类别:
    Fellowship Award

相似国自然基金

有理函数动力系统的一些研究
  • 批准号:
    10926028
  • 批准年份:
    2009
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Prime editing for Crumbs homologue 1 (CRB1) Inherited Retinal Dystrophies
Crumbs 同源物 1 (CRB1) 遗传性视网膜营养不良的 Prime 编辑
  • 批准号:
    10636325
  • 财政年份:
    2023
  • 资助金额:
    $ 13.86万
  • 项目类别:
OCT-based functional biomarkers for degenerative diseases of the photoreceptor-RPE-choroid neurovascular unit
基于 OCT 的光感受器-RPE-脉络膜神经血管单元退行性疾病的功能生物标志物
  • 批准号:
    10737548
  • 财政年份:
    2023
  • 资助金额:
    $ 13.86万
  • 项目类别:
Functional Testing and Quality of Life in Glaucoma
青光眼的功能测试和生活质量
  • 批准号:
    10734431
  • 财政年份:
    2023
  • 资助金额:
    $ 13.86万
  • 项目类别:
Progression of Early Atrophic Lesions in Age-related Macular degeneration
年龄相关性黄斑变性早期萎缩性病变的进展
  • 批准号:
    10635325
  • 财政年份:
    2023
  • 资助金额:
    $ 13.86万
  • 项目类别:
NAC Attack, A Phase-3, Multicenter, Randomized, Placebo-Controlled Trial in Patents with Retinitis Pigmentosa
NAC Attack,针对色素性视网膜炎的 3 期、多中心、随机、安慰剂对照试验
  • 批准号:
    10333382
  • 财政年份:
    2022
  • 资助金额:
    $ 13.86万
  • 项目类别:
Investigation of Non-Invasive Pulsed Electromagnetic Field (PEMF) Therapy for Female Patients with Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS)
非侵入性脉冲电磁场​​ (PEMF) 治疗女性间质性膀胱炎/膀胱疼痛综合征 (IC/BPS) 患者的研究
  • 批准号:
    10593955
  • 财政年份:
    2022
  • 资助金额:
    $ 13.86万
  • 项目类别:
NAC Attack AOSLO Reading Center
NAC 攻击 AOSLO 阅读中心
  • 批准号:
    10593914
  • 财政年份:
    2022
  • 资助金额:
    $ 13.86万
  • 项目类别:
Early Detection of Progressive Visual Loss in Glaucoma Using Deep Learning
使用深度学习早期检测青光眼进行性视力丧失
  • 批准号:
    10424899
  • 财政年份:
    2022
  • 资助金额:
    $ 13.86万
  • 项目类别:
Early Detection of Progressive Visual Loss in Glaucoma Using Deep Learning
使用深度学习早期检测青光眼进行性视力丧失
  • 批准号:
    10623178
  • 财政年份:
    2022
  • 资助金额:
    $ 13.86万
  • 项目类别:
Improving Glaucoma Care Using a Scalable Decision Support System
使用可扩展的决策支持系统改善青光眼护理
  • 批准号:
    10447378
  • 财政年份:
    2022
  • 资助金额:
    $ 13.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了