Geometric Measure Theory, Image Processing, and Nonlinear Partial Differential Equations
几何测度理论、图像处理和非线性偏微分方程
基本信息
- 批准号:1813695
- 负责人:
- 金额:$ 17.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will provide a mathematical foundation for the novel numerical methods used in image processing. Applications of image processing are ubiquitous. They range from analyzing medical images, such as CAT or MRI images, to forensic sciences, face recognition, satellite imagery, speech recognition (acoustic imaging), etc. All of these applications are underlied by fast mathematical algorithms that do the work of image enhancement and restoration. To measure the difference between images, numerical methods under consideration in this project use a so-called "earth mover's distance" (in a more general context it is known as the Wasserstein metric). This is a novel application of the earth mover's distances that promises a substantial speed-up of image processing algorithms. Training, advising, and mentoring of graduate students toward their doctoral degree is intertwined with the research tasks of the project. The project will support at least 3 graduate students, two of them female students. This research is concerned with several diverse analytical topics; the mathematical analysis is unified through techniques of geometric measure theory. The numerical methods to compute the earth mover's distance are based on a regularization and a minimization over a class of vector fields satisfying a boundary condition. However, there is currently no theory confirming either the existence of minimizers or the convergence of the regularized problem to the original one. These questions will be addressed by using techniques of calculus of variations, gamma convergence, and the theory of traces of divergence-measure vector fields to deal with the boundary condition. Simultaneously this project will consider several unresolved problems concerning the theory of divergence-measure vector fields. Another important aspect of the field of image processing to be investigated is the advancement of methods of evaluating the image noise pioneered by Rudin, Osher, and Fatemi (the ROF model). The research of this project will also include analysis of models for segregation of populations using non-linear elliptic equations, with the goal to understand the free boundaries that separate the populations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本课题将为图像处理中使用的新型数值方法提供数学基础。图像处理的应用无处不在。它们的范围从分析医学图像,如CAT或MRI图像,到法医科学,人脸识别,卫星图像,语音识别(声学成像)等。所有这些应用都是基于快速的数学算法来完成图像增强和恢复的工作。为了测量图像之间的差异,在这个项目中考虑的数值方法使用了所谓的“推土机距离”(在更一般的情况下,它被称为Wasserstein度量)。这是推土机距离的一种新应用,有望大大加快图像处理算法的速度。研究生攻读博士学位的培训、建议和指导与该项目的研究任务交织在一起。该项目将资助至少3名研究生,其中两名是女学生。本研究涉及几个不同的分析主题;通过几何测量理论的方法统一了数学分析。计算推土机距离的数值方法是基于一类满足边界条件的矢量场的正则化和最小化。然而,目前还没有理论证明最小化的存在,也没有理论证明正则化问题收敛于原问题。这些问题将通过使用变分法、伽玛收敛和发散轨迹理论来解决,测量向量场来处理边界条件。同时,本课题将考虑散度测量向量场理论中几个尚未解决的问题。要研究的图像处理领域的另一个重要方面是Rudin, Osher和Fatemi开创的图像噪声评估方法的进步(ROF模型)。该项目的研究还将包括使用非线性椭圆方程分析种群隔离模型,目的是了解分离种群的自由边界。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Monica Torres其他文献
Metabolic Reprogramming and Reliance in Human Skin Wound Healing
人类皮肤伤口愈合中的代谢重编程与依赖
- DOI:
10.1016/j.jid.2023.02.039 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:5.700
- 作者:
Mansi Manchanda;Monica Torres;Farydah Inuossa;Ritu Bansal;Rahul Kumar;Matthew Hunt;Craig E. Wheelock;Etty Bachar-Wikstrom;Jakob D. Wikstrom - 通讯作者:
Jakob D. Wikstrom
Beyond the skin: endocrine, psychological and nutritional aspects in women with hidradenitis suppurativa
- DOI:
10.1186/s12967-025-06175-1 - 发表时间:
2025-02-10 - 期刊:
- 影响因子:7.500
- 作者:
Anna Dattolo;Monica Torres;Evelyn Frias-Toral;Alessia Paganelli;Mariana Zhang;Stefania Madonna;Laura Mercurio;Gabriela Cucalón;Federico Garbarino;Cristina Albanesi;Emanuele Scala - 通讯作者:
Emanuele Scala
Cellular and molecular roles of reactive oxygen species in wound healing
活性氧在伤口愈合中的细胞和分子作用
- DOI:
10.1038/s42003-024-07219-w - 发表时间:
2024-11-19 - 期刊:
- 影响因子:5.100
- 作者:
Matthew Hunt;Monica Torres;Etty Bachar-Wikstrom;Jakob D. Wikstrom - 通讯作者:
Jakob D. Wikstrom
The Temporal Dynamics of Proteins in Aged Skin Wound Healing and Comparison with Gene Expression
衰老皮肤伤口愈合中蛋白质的时间动态及其与基因表达的比较
- DOI:
10.1016/j.jid.2024.09.024 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:5.700
- 作者:
Monica Torres;Gilad Silberberg;Akos Vegvari;Roman A. Zubarev;Matthew Hunt;Ritu Bansal;Etty Bachar-Wikstrom;Jakob D. Wikstrom - 通讯作者:
Jakob D. Wikstrom
Impaired HDL (High-Density Lipoprotein)-Mediated Macrophage Cholesterol Efflux in Patients With Abdominal Aortic Aneurysm—Brief Report
腹主动脉瘤患者 HDL(高密度脂蛋白)介导的巨噬细胞胆固醇流出受损 - 简要报告
- DOI:
10.1161/atvbaha.118.311704 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
D. Martínez;L. Cedó;J. Metso;E. Burillo;A. García;Marina Canyelles;J. Lindholt;Monica Torres;L. Blanco;Jesús Vázquez;F. Blanco;M. Jauhiainen;J. Martín;J. Escolà - 通讯作者:
J. Escolà
Monica Torres的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Monica Torres', 18)}}的其他基金
Midwest Women in Mathematics Symposium
中西部女性数学研讨会
- 批准号:
1740959 - 财政年份:2017
- 资助金额:
$ 17.17万 - 项目类别:
Standard Grant
Divergence-measure fields and the structure of solutions of systems of hyperbolic conservation laws
双曲守恒定律系统的散度测度场和解的结构
- 批准号:
0901245 - 财政年份:2009
- 资助金额:
$ 17.17万 - 项目类别:
Standard Grant
Divergence-Measure Fields and Nonlinear Conservation Laws
散度测度场和非线性守恒定律
- 批准号:
0501021 - 财政年份:2005
- 资助金额:
$ 17.17万 - 项目类别:
Standard Grant
Divergence-Measure Fields and Nonlinear Conservation Laws
散度测度场和非线性守恒定律
- 批准号:
0540869 - 财政年份:2005
- 资助金额:
$ 17.17万 - 项目类别:
Standard Grant
NSF Minority Postdoctoral Research Fellowship for FY-1999
1999 财年 NSF 少数族裔博士后研究奖学金
- 批准号:
9904163 - 财政年份:1999
- 资助金额:
$ 17.17万 - 项目类别:
Fellowship Award
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 17.17万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 17.17万 - 项目类别:
Standard Grant
Shape Optimization, Free Boundary Problems, and Geometric Measure Theory
形状优化、自由边界问题和几何测量理论
- 批准号:
2247096 - 财政年份:2023
- 资助金额:
$ 17.17万 - 项目类别:
Standard Grant
CAREER: Weighted Fourier extension estimates and interactions with PDEs and geometric measure theory
职业:加权傅里叶扩展估计以及与偏微分方程和几何测度理论的相互作用
- 批准号:
2237349 - 财政年份:2023
- 资助金额:
$ 17.17万 - 项目类别:
Continuing Grant
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加性组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2022
- 资助金额:
$ 17.17万 - 项目类别:
Discovery Grants Program - Individual
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加性组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2021
- 资助金额:
$ 17.17万 - 项目类别:
Discovery Grants Program - Individual
Recent Developments on Geometric Measure Theory and its Applications
几何测度理论及其应用的最新进展
- 批准号:
2001095 - 财政年份:2020
- 资助金额:
$ 17.17万 - 项目类别:
Standard Grant
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加法组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2020
- 资助金额:
$ 17.17万 - 项目类别:
Discovery Grants Program - Individual
Measure Theory and Geometric Topology in Dynamics
动力学中的测量理论和几何拓扑
- 批准号:
1900778 - 财政年份:2019
- 资助金额:
$ 17.17万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Challenges in Geometric Measure Theory
FRG:协作研究:几何测度理论的新挑战
- 批准号:
1854147 - 财政年份:2019
- 资助金额:
$ 17.17万 - 项目类别:
Standard Grant














{{item.name}}会员




