Modeling Heating Effects in Low-Power Multi-Gate SOI Devices and High-Power GaN HEMTs

低功率多栅极 SOI 器件和高功率 GaN HEMT 中的热效应建模

基本信息

  • 批准号:
    0901251
  • 负责人:
  • 金额:
    $ 30.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-15 至 2012-09-30
  • 项目状态:
    已结题

项目摘要

Project SummarySince scaling of conventional semiconductor devices will ultimately reach its limits due to both high production cost and device reliability issues, alternatives to classical metal-oxide-semiconductor field effect transistors (MOSFETs) are being sought. There are two ways one can achieve enhanced device performance: (1) by using alternative materials such as strained-Si, SiGe, GaN, etc.; and (2) by using alternative device geometries.Fully-depleted silicon on insulator (SOI), dual gate and FinFET devices are examples of al-ternative device technologies. Since the active silicon film in these structures is placed on top of a buried insulator layer, the power dissipation due to the substrate leakage current is eliminated. However, the buried oxide layer (which has a thermal conductivity about 100 times smaller than bulk Si) is a tremendous barrier to heat conduction, and degradation of the carrier mobility in the channel region of these devices occurs due to self-heating effects. In addition to silicon on insula-tor low power devices, heating is also a problem in high power wide-bandgap GaN HEMTs due to the large operation biases. The understanding of self-heating in these device structures can also shed light on their reliability, namely the phenomenon of current collapse due to the formation of cracks at the gate-drain end of the channel due to large electric fields and high lattice tempera-tures.Therefore, the purpose of this project is to develop sophisticated particle-based device simu-lation tools that simultaneously take into account self-heating effects by solving the Boltzmann transport equations (BTEs) for both electrons and phonons, and considering quantum confine-ment effects for both the electrons and the phonons. Such a tool would be the most sophisticated simulator to date since electron and phonon transport is treated at the same physical level within the BTE.The impact of this project is two-fold. (1) For low-power devices it allows for better device de-signs including the utilization of alternative buried insulator materials that may lead to better de-vice performance. This in turn can lead to new generations of CMOS devices. (2) Regarding the GaN HEMTs, if the problem of current collapse is understood and prevented, then these devices will have applications in the military and the automotive industry where both high-power, high temperature and high-frequency devices are being sought. Yet another important component of this project is that the students involved in the project will work on the state of the art research
由于高生产成本和器件可靠性问题,传统半导体器件的规模最终将达到极限,因此人们正在寻找经典金属氧化物半导体场效应晶体管(mosfet)的替代品。有两种方法可以实现器件性能的增强:(1)通过使用替代材料,如应变si, SiGe, GaN等;(2)采用不同的器件几何形状。全耗尽绝缘体上硅(SOI)、双栅极和FinFET器件是替代器件技术的例子。由于这些结构中的活性硅膜被放置在埋藏绝缘体层的顶部,因此消除了由于衬底泄漏电流引起的功率耗散。然而,埋藏的氧化层(其导热系数约为体硅的100倍)是热传导的巨大障碍,并且由于自热效应,这些器件通道区域的载流子迁移率会下降。除了用于低功率器件的绝缘体上的硅外,由于大的操作偏差,加热也是高功率宽禁带GaN hemt的一个问题。对这些器件结构中自热的理解也可以揭示它们的可靠性,即由于大电场和高晶格温度在通道的栅漏端形成裂纹而导致电流崩溃的现象。因此,本项目的目的是开发复杂的基于粒子的器件模拟工具,通过求解电子和声子的玻尔兹曼输运方程(BTEs)同时考虑自热效应,并考虑电子和声子的量子约束效应。这种工具将是迄今为止最复杂的模拟器,因为电子和声子输运在BTE内的同一物理层面上处理。这个项目的影响是双重的。(1)对于低功率器件,它允许更好的器件设计,包括使用可替代的埋地绝缘体材料,这可能导致更好的器件性能。这反过来又可以导致新一代的CMOS器件。(2)对于GaN hemt,如果了解并防止电流崩溃的问题,那么这些器件将在军事和汽车工业中得到应用,这些行业正在寻求高功率,高温和高频器件。然而,这个项目的另一个重要组成部分是,参与该项目的学生将从事最先进的研究

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dragica Vasileska其他文献

Ultrafast Wigner transport in quantum wires
  • DOI:
    10.1007/s10825-006-0101-y
  • 发表时间:
    2006-12-09
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Mihail Nedjalkov;Dragica Vasileska;Emanouil Atanassov;Vassil Palankovski
  • 通讯作者:
    Vassil Palankovski
Theoretical Evidence of Spontaneous Spin Polarization in GaAs/AlGaAs Split-Gate Heterostructures
  • DOI:
    10.1007/s10825-005-7122-9
  • 发表时间:
    2005-04-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Ashwin Ashok;Richard Akis;Dragica Vasileska;David K. Ferry
  • 通讯作者:
    David K. Ferry
Semi-discrete 2D Wigner-particle approach
  • DOI:
    10.1007/s10825-008-0197-3
  • 发表时间:
    2008-01-26
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Mihail Nedjalkov;Dragica Vasileska
  • 通讯作者:
    Dragica Vasileska
Self-Consistent Subband Structure and Mobility of Two Dimensional Holes in Strained SiGe MOSFETs
  • DOI:
    10.1023/b:jcel.0000011468.64475.94
  • 发表时间:
    2003-12-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Santhosh Krishnan;Dragica Vasileska
  • 通讯作者:
    Dragica Vasileska
3D Monte-Carlo device simulations using an effective quantum potential including electron-electron interactions
  • DOI:
    10.1007/s10825-006-0058-x
  • 发表时间:
    2006-12-09
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Clemens Heitzinger;Christian Ringhofer;Shaikh Ahmed;Dragica Vasileska
  • 通讯作者:
    Dragica Vasileska

Dragica Vasileska的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dragica Vasileska', 18)}}的其他基金

Collaborative Research: Solid-State Selenium Photo-multiplier with a High-K Dielectric Blocking Layer for High, Noise-free Avalanche Gain
合作研究:具有高 K 电介质阻挡层的固态硒光电倍增器,可实现高、无噪声的雪崩增益
  • 批准号:
    2048400
  • 财政年份:
    2021
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantum Simulator for Modeling Quantum Dot Photodetectors
合作研究:用于模拟量子点光电探测器的量子模拟器
  • 批准号:
    0701926
  • 财政年份:
    2007
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Continuing Grant
Modeling of P-Channel Si1-xGex MOSFET Devices and Silicon-On-Insulator (SOI) Device Structures
P 沟道 Si1-xGex MOSFET 器件和绝缘体上硅 (SOI) 器件结构的建模
  • 批准号:
    0214867
  • 财政年份:
    2002
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Standard Grant
Modeling of Nanoscale MOSFETs
纳米级 MOSFET 建模
  • 批准号:
    0218008
  • 财政年份:
    2002
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Continuing Grant
Career: Computation as a Means of Understanding the Operation of the Devices of the Future
职业:计算作为理解未来设备操作的一种手段
  • 批准号:
    9875051
  • 财政年份:
    1999
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Standard Grant

相似海外基金

Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
  • 批准号:
    22H03519
  • 财政年份:
    2022
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Effects of prenatal Tobacco Heating Products exposure on the fetus and estimating the effects occurring after birth
产前接触烟草加热产品对胎儿的影响以及估计出生后发生的影响
  • 批准号:
    22K19654
  • 财政年份:
    2022
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Fundamental Processes of Instantaneous Structural Transformation of Crystal Defects Using Synergistic Effects of Irradiation Damage and Localized Laser Heating
利用辐照损伤和局部激光加热协同效应实现晶体缺陷瞬时结构转变的基本过程
  • 批准号:
    22K04783
  • 财政年份:
    2022
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A new model heating capability and study of wall temperature effects in hypersonic boundary layer transitio
高超声速边界层转变的新模型加热能力及壁温效应研究
  • 批准号:
    2597782
  • 财政年份:
    2021
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Studentship
Exercise pressor reflex in peripheral artery disease: beneficial effects of heating and mechanisms
外周动脉疾病中的运动加压反射:加热的有益作用和机制
  • 批准号:
    10379932
  • 财政年份:
    2019
  • 资助金额:
    $ 30.62万
  • 项目类别:
Exercise pressor reflex in peripheral artery disease: beneficial effects of heating and mechanisms
外周动脉疾病中的运动加压反射:加热的有益作用和机制
  • 批准号:
    10591496
  • 财政年份:
    2019
  • 资助金额:
    $ 30.62万
  • 项目类别:
Exercise pressor reflex in peripheral artery disease: beneficial effects of heating and mechanisms
外周动脉疾病中的运动加压反射:加热的有益作用和机制
  • 批准号:
    9906271
  • 财政年份:
    2019
  • 资助金额:
    $ 30.62万
  • 项目类别:
Exercise pressor reflex in peripheral artery disease: beneficial effects of heating and mechanisms
外周动脉疾病中的运动加压反射:加热的有益作用和机制
  • 批准号:
    10133124
  • 财政年份:
    2019
  • 资助金额:
    $ 30.62万
  • 项目类别:
Effects of electron cyclotron wave propagation with orbital angular momentum on plasma heating
电子回旋波以轨道角动量传播对等离子体加热的影响
  • 批准号:
    19K14687
  • 财政年份:
    2019
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effects of muscle cooling and heating on local oxygen consumption and blood flow during exercise
运动时肌肉冷却和加热对局部耗氧量和血流量的影响
  • 批准号:
    512437-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 30.62万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了