Hessian and Special Lagrangian Equations

Hessian 和特殊拉格朗日方程

基本信息

  • 批准号:
    0901644
  • 负责人:
  • 金额:
    $ 14.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2013-09-30
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The project will investigate interactions between differential geometry and nonlinear partial differential equations. In particular, it will explore (A) regularity for certain classes of nonlinear Hessian equations and (B) geometry of special Lagrangian submanifolds of Euclidean space, Calabi-Yau manifolds, and certain pseudo-Riemannian manifolds. A recent counterexample shows that regularity for the special Lagrangian equation does not hold in lower phases. Work of the principal investigator with Yuan Yu then completes the picture in three dimensions, but there is still a gap in what is known for dimensions larger than three. The PI and his collaborators are also looking for regularity of other related symmetric Hessian equations. Recent and ongoing developments in the theory of optimal transportation demonstrate that regularity of the optimal transportation map is related to the geometry of certain maximal calibrated submanifolds of a pseudo-Riemannian space. The project's goal is to apply the machinery of calibrated manifolds to obtain novel results in optimal transport, in the process developing a nice geometric picture.String theory is an exciting developing branch of physics, which many hope will lead to an understanding of the fundamental interactions of the universe. In the late 1990s, leading mathematical physicists asserted that, in order to obtain a better understanding of string theory, one should first try to understand objects called "special Lagrangian submanifolds." These objects are minimal surfaces that have special properties and are governed by a nonlinear equation. This project attempts to answer questions such as when these surfaces are smooth, when they are flat, and when they are discontinuous. The answers to such questions will have an impact on the study of the underlying physics. The optimal transport problem asks the question of how to transport materials most cost effectively between two locations. The answers are directly applicable in many areas of science, including economics, medical imaging, fluid mechanics, and meteorology. Perhaps the biggest question asks the following: When is the optimal transportation continuous? Recently, the principal investigator has found a connection between the problem of finding the optimal transportation map and the problem of describing a certain type of special Lagrangian minimal surface. The smoothness of minimal surfaces has been intensely studied by mathematicians for decades. This project now seeks to apply some of the ideas from geometry to the theory of optimal transport.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。该项目将研究微分几何和非线性偏微分方程之间的相互作用。特别是,它将探索(A)某些类别的非线性海森方程的正则性和(B)几何的特殊拉格朗日子流形的欧几里得空间,卡-丘流形,某些伪黎曼流形。最近的一个反例表明,特殊的拉格朗日方程的正则性不成立,在较低的阶段。首席研究员与袁宇的工作完成了三维图像,但在已知的大于三维的维度中仍然存在差距。PI和他的合作者也在寻找其他相关对称海森方程的正则性。最近和正在进行的最优运输理论的发展表明,最优运输映射的正则性与伪黎曼空间的某些极大校准子流形的几何形状有关。该项目的目标是应用校准流形的机械来获得最佳传输的新结果,在此过程中开发出一个漂亮的几何图片。弦理论是物理学中一个令人兴奋的发展中的分支,许多人希望它将导致对宇宙基本相互作用的理解。在20世纪90年代后期,数学物理学家们断言,为了更好地理解弦理论,人们应该首先尝试理解被称为“特殊拉格朗日子流形”的对象。“这些物体是具有特殊性质的最小表面,由非线性方程控制。这个项目试图回答的问题,如当这些表面是光滑的,当他们是平坦的,当他们是不连续的。这些问题的答案将对基础物理学的研究产生影响。最优运输问题是如何在两个地点之间最经济有效地运输材料。这些答案直接适用于许多科学领域,包括经济学、医学成像、流体力学和气象学。也许最大的问题是:什么时候是最佳的运输连续?最近,主要研究者发现了寻找最优运输图的问题与描述某种特殊拉格朗日极小曲面的问题之间的联系。极小曲面的光滑性问题已经被数学家们研究了几十年。这个项目现在试图将几何学的一些思想应用到最优运输理论中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Micah Warren其他文献

Regularity of Hamiltonian stationary equations in symplectic manifolds
辛流形中哈密顿平稳方程的正则性
  • DOI:
    10.1016/j.aim.2023.109059
  • 发表时间:
    2023-07-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Arunima Bhattacharya;Jingyi Chen;Micah Warren
  • 通讯作者:
    Micah Warren

Micah Warren的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Micah Warren', 18)}}的其他基金

Hessian equations with geometric applications
Hessian 方程及其几何应用
  • 批准号:
    1438359
  • 财政年份:
    2013
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
Hessian equations with geometric applications
Hessian 方程及其几何应用
  • 批准号:
    1161498
  • 财政年份:
    2012
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant

相似国自然基金

非阶化Hamiltonial型和Special型李代数的表示
  • 批准号:
    10701002
  • 批准年份:
    2007
  • 资助金额:
    15.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Exploring the Impact of Clinical Diagnosis on Health and Education Outcomes for Children Receiving Special Educational Needs support for Autism
探索临床诊断对接受自闭症特殊教育需求支持的儿童的健康和教育结果的影响
  • 批准号:
    ES/Z502431/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Fellowship
Special Care needs の子どもと家族のウェルビーイングの実装-有効な父親支援の探索
在特殊护理需求中实现儿童和家庭福祉 - 探索有效的父亲支持
  • 批准号:
    24K02744
  • 财政年份:
    2024
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Implementation of Japanese Special Activities "Tokubetsu Katsudo" through Practices of Noncognitive Learning in Latin America
日本特别活动“Tokubetsu Katsudo”通过拉丁美洲非认知学习实践的实施
  • 批准号:
    24K05779
  • 财政年份:
    2024
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
  • 批准号:
    2903366
  • 财政年份:
    2024
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Studentship
Early-life predictors of primary school learning outcomes in children with complex special educational needs: A prospective longitudinal study of tube
具有复杂特殊教育需求的儿童小学学习成果的早期预测因素:管的前瞻性纵向研究
  • 批准号:
    2887024
  • 财政年份:
    2023
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Studentship
ount Me In! Developing and analysing the efficacy of pedagogical strategies for those providing music education to children with special abilities
算我进来吧!
  • 批准号:
    2888097
  • 财政年份:
    2023
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Studentship
Literature and War: The Yugoslavia conflict in German literature with special reference to the texts by Peter Handke and Saša Stanišić
文学与战争:德国文学中的南斯拉夫冲突,特别参考彼得·汉德克和萨的文本
  • 批准号:
    23K00442
  • 财政年份:
    2023
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Special Public T Cell Receptor Sequences that Predict Outcomes for Cancer Patients
预测癌症患者预后的特殊公共 T 细胞受体序列
  • 批准号:
    10577518
  • 财政年份:
    2023
  • 资助金额:
    $ 14.57万
  • 项目类别:
Building Capacity for Critical Need STEM and Special Education Teachers in Southeast Arkansas
阿肯色州东南部急需 STEM 和特殊教育教师的能力建设
  • 批准号:
    2243016
  • 财政年份:
    2023
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
Special issue of Oceanography titled, A Vision for Capacity Sharing in the Ocean Sciences
海洋学特刊,题为“海洋科学能力共享的愿景”
  • 批准号:
    2318309
  • 财政年份:
    2023
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了