QMHP: Quantum-field theoretical modeling and simulation of many-body entanglement of excitons and photons in semiconductor structures

QMHP:半导体结构中激子和光子多体纠缠的量子场理论建模和模拟

基本信息

项目摘要

Objective:The goal of our proposed theoretical research is to model and simulate the quantum many-body entanglement of excitons, photons, and polaritons in semiconductor structures by means of new analytical and numerical quantum-field theoretical techniques.Intellectual merit:We plan to investigate the entanglement among excitons produced by ultrashort laser pulses and the mapping of this entanglement onto photons. We plan to develop perturbative and non-perturbative theories that can account for the entanglement of excitons and photons. As a perturbative method, we have derived a new quantum-field theoretical diagrammatic technique to describe polarization and many-body entanglement of excitons and photons in arbitrary order of the electric field or the number of excitons and photons. Our calculations take all electron and hole correlations into account, i.e. we do not treat the excitons as bosons. As a non-perturbative method, we plan to generalize the semiconductor Bloch equations (SBEs) in that we additionally consider the time evolution of the two-particle correlation functions. Since SBEs are formulated in terms of a density matrix, decoherence due to Coulomb exchange, disorder, phonons, nuclear spins, etc. can be studied in the same framework. Taking into account the entanglement of photons with localized spins in e.g. quantum dots, we will develop a new method for quantum teleportation and quantum computing based on many-body theory.Educational activity:It is our goal to provide undergraduate and graduate students in the fields of analytical and numerical quantum field theory with a personalized e-learning system that is able to adapt to the individual needs of a student by means of a back-end program code made of an artificial neural network. The front-end of our program code will teach the students the basics of quantum many-body correlations and entanglement by means of interactive visualization and game-play. Key applications based on quantum teleportation and quantum computing will ignite the curiosity of the students.Broader impact:Our theoretical efforts aim at producing a global quantum network over optical fibers and satellites, which requires a many-body theory for the thorough description of many-body entanglement in our semiconductor structures. Our research will create a need of scientists trained in quantum many-body physics. Consequently, teaching graduate and undergraduate students the basics of quantum many-body effects becomes essential. Our education program is the basis for boosting research in this promising field with multidisciplinary applications, such as quantum teleportation, quantum communication, optical computers, optospintronics, and quantum computing.
目的:我们的理论研究的目标是通过新的量子场理论的解析和数值方法来模拟半导体结构中激子、光子和极化激元的量子多体纠缠。智力价值:我们计划研究由超短激光脉冲产生的激子之间的纠缠以及这种纠缠到光子的映射。我们计划发展微扰和非微扰理论来解释激子和光子的纠缠。 作为微扰方法,我们推导出了一种新的量子场理论图形技术,用于描述激子和光子在电场或激子和光子数的任意顺序下的极化和多体纠缠。我们的计算考虑了所有的电子和空穴相关性,也就是说,我们不把激子当作玻色子。作为一种非微扰方法,我们计划推广的半导体布洛赫方程(SBE),我们还考虑了时间演化的两粒子关联函数。由于SBE是用密度矩阵来表示的,因此库仑交换、无序、声子、核自旋等引起的退相干可以在同一框架下进行研究。考虑到量子点等局域自旋的光子纠缠,开发基于多体理论的量子隐形传态和量子计算的新方法。教育活动:通过人工神经网络的后端程序代码,为解析量子场论和数值量子场论领域的本科生和研究生提供能够适应学生个人需求的个性化电子学习系统。我们程序代码的前端将通过交互式可视化和游戏的方式向学生教授量子多体关联和纠缠的基础知识。基于量子隐形传态和量子计算的关键应用将激发学生的好奇心。更广泛的影响:我们的理论工作旨在通过光纤和卫星产生全球量子网络,这需要多体理论来彻底描述我们半导体结构中的多体纠缠。我们的研究将创造一个在量子多体物理学训练的科学家的需求。因此,教授研究生和本科生量子多体效应的基础知识变得至关重要。我们的教育计划是促进这一具有多学科应用前景的领域研究的基础,如量子隐形传态,量子通信,光学计算机,光自旋电子学和量子计算。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Leuenberger其他文献

Geospatial approach for defining the Wildland-Urban Interface in the Alpine environment
定义高山环境中荒地-城市界面的地理空间方法
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Conedera;M. Tonini;L. Oleggini;C. V. Orozco;Michael Leuenberger;G. Pezzatti
  • 通讯作者:
    G. Pezzatti
Mapping of Estimations and Prediction Intervals Using Extreme Learning Machines
使用极限学习机绘制估计和预测区间
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Leuenberger;M. Kanevski
  • 通讯作者:
    M. Kanevski
Feature selection in environmental data mining combining Simulated Annealing and Extreme Learning Machine
模拟退火与极限学习机相结合的环境数据挖掘中的特征选择
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Leuenberger;M. Kanevski
  • 通讯作者:
    M. Kanevski

Michael Leuenberger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Leuenberger', 18)}}的其他基金

SHF: Medium: Collaborative Research: Atomic scale to circuit modeling of emerging nanoelectronic devices and adapting them to SPICE simulation package
SHF:中:协作研究:新兴纳米电子器件的原子尺度电路建模并使它们适应 SPICE 仿真包
  • 批准号:
    1514089
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Hybrid organic-inorganic metal-semiconductor nanoparticles for highly efficient solar cell concentrators
用于高效太阳能电池聚光器的混合有机-无机金属-半导体纳米粒子
  • 批准号:
    1128597
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Conference: Arithmetic quantum field theory
会议:算术量子场论
  • 批准号:
    2400553
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Elliptic cohomology and quantum field theory
职业:椭圆上同调和量子场论
  • 批准号:
    2340239
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Twistors and Quantum Field Theory: Strong fields, holography and beyond
扭量和量子场论:强场、全息术及其他
  • 批准号:
    EP/Z000157/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
FMSG: Eco: Field Assisted Nano Assembly System (FANAS) for Next-Generation Photonics and Quantum Computing
FMSG:Eco:用于下一代光子学和量子计算的现场辅助纳米组装系统 (FANAS)
  • 批准号:
    2328096
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Algorithms for simulation of strong-field multi-particle dynamics on quantum computers
量子计算机上强场多粒子动力学模拟算法
  • 批准号:
    24K08336
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quiver Gauge Theory, String Theory and Quantum Field Theory.
箭袋规范理论、弦理论和量子场论。
  • 批准号:
    2890913
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Applications of algebraic topology to quantum field theory
代数拓扑在量子场论中的应用
  • 批准号:
    2882485
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
M-Theory, Cosmology and Quantum Field Theory
M 理论、宇宙学和量子场论
  • 批准号:
    ST/X000575/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Research in Novel Symmetries of Quantum Field Theory and String Theory
量子场论和弦理论的新对称性研究
  • 批准号:
    2310279
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了