SHF: Medium: Collaborative Research: Atomic scale to circuit modeling of emerging nanoelectronic devices and adapting them to SPICE simulation package

SHF:中:协作研究:新兴纳米电子器件的原子尺度电路建模并使它们适应 SPICE 仿真包

基本信息

项目摘要

Aggressive scaling of CMOS technology and concomitant inventions of nanoscale nascent technologies have fueled the growth of computer, information, communication and consumer electronics industries of the 21st Century by leveraging the ground-breaking discoveries in nanoscience and nanotechnology. The workhorse of multibillion-dollar semiconductor industry, the CMOS technology is approaching its scaling limit due to the strong quantum-mechanical effects present at the nanoscale. To sustain the accelerated pace of economic growth during the post-CMOS era, this multi-university collaborative research proposal envisages building the roadmap of VLSI technology in two significant ways. First, the research is mooted to extend quantum transport principles to simulate emerging nano-devices based on novel semiconductor and 2-D layered materials by exploiting non-charge based degrees of freedom, electron spin controlled magnetization, interaction between electromagnetic waves and semiconductors in metamaterial structures, and topological states in topological insulators. Second, the research will systematically scale these properties from their fundamental atomistic limits to circuit level integration by developing industry-graded SPICE-compatible compact models for heterogeneous circuits that will define the landscape of beyond Moore?s Law VLSI systems. Integrative education, training, and outreach activities envisioned in this collaborative proposal will encompass K-12, undergraduate, graduate, female, minority, and postdoctoral fellows by leveraging the existing outreach activities of participating universities in order to advance science and engineering education in broader segments of the society.Using density-functional theory (DFT), time-dependent density functional theory (TD-DFT), time-dependent density-matrix functional theory (TD-DMFT), to phenomenological Extended Huckel to effective mass, in conjunction with non-equilibrium Green?s function (NEGF) methods, quantum field theory, and finite-difference time domain (FDTD) methods, a wide variety of computational methods are going to be developed to tackle the modeling of multiscale circuits in future VLSI systems. The software packages and multiscale modeling tools resulting from the proposed research activity are going to provide computer chip designers and manufacturers the ability to model complex hybrid substrates comprising nanoscale electronic, spintronic, opto-electronic, and plasmonic devices. The resulting software is going to be written with a view to enabling researchers from universities and practicing engineers in industries to develop their own modules that will engender improved system functionality, integration density, and operational speed.
CMOS技术的积极扩展和纳米级新生技术的伴随发明通过利用纳米科学和纳米技术的突破性发现推动了21世纪计算机、信息、通信和消费电子行业的增长。作为数十亿美元的半导体工业的主力,CMOS技术由于纳米级的强量子力学效应正在接近其规模极限。为了在后CMOS时代保持经济增长的加速步伐,这项多所大学的合作研究计划设想以两种重要方式构建VLSI技术的路线图。首先,该研究旨在扩展量子输运原理,通过利用基于非电荷的自由度,电子自旋控制的磁化,电磁波与超材料结构中的半导体之间的相互作用,以及拓扑绝缘体中的拓扑状态,来模拟基于新型半导体和2-D分层材料的新兴纳米器件。其次,研究将系统地扩展这些属性从他们的基本原子限制电路级集成开发行业级SPICE兼容的紧凑型模型的异构电路,将定义超越摩尔景观?s定律的超大规模集成电路系统。本合作提案中设想的综合教育、培训和推广活动将通过利用参与大学的现有推广活动,涵盖K-12、本科生、研究生、女性、少数民族和博士后研究员,以推动社会更广泛领域的科学和工程教育。利用密度泛函理论(DFT)、含时密度泛函理论(TD-DFT)、含时密度矩阵泛函理论(TD-DMFT),唯象扩展休克尔有效质量,结合非平衡绿色?的函数(NEGF)的方法,量子场论,和有限差分时域(FDTD)的方法,各种各样的计算方法将被开发,以解决未来的超大规模集成电路系统的多尺度电路建模。从拟议的研究活动产生的软件包和多尺度建模工具将提供计算机芯片设计师和制造商的能力,包括纳米级电子,自旋电子,光电和等离子体器件的复杂混合基板建模。由此产生的软件将被编写,以使来自大学的研究人员和行业中的实践工程师能够开发自己的模块,从而提高系统功能,集成密度和运行速度。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Leuenberger其他文献

Geospatial approach for defining the Wildland-Urban Interface in the Alpine environment
定义高山环境中荒地-城市界面的地理空间方法
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Conedera;M. Tonini;L. Oleggini;C. V. Orozco;Michael Leuenberger;G. Pezzatti
  • 通讯作者:
    G. Pezzatti
Mapping of Estimations and Prediction Intervals Using Extreme Learning Machines
使用极限学习机绘制估计和预测区间
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Leuenberger;M. Kanevski
  • 通讯作者:
    M. Kanevski
Feature selection in environmental data mining combining Simulated Annealing and Extreme Learning Machine
模拟退火与极限学习机相结合的环境数据挖掘中的特征选择
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Leuenberger;M. Kanevski
  • 通讯作者:
    M. Kanevski

Michael Leuenberger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Leuenberger', 18)}}的其他基金

Hybrid organic-inorganic metal-semiconductor nanoparticles for highly efficient solar cell concentrators
用于高效太阳能电池聚光器的混合有机-无机金属-半导体纳米粒子
  • 批准号:
    1128597
  • 财政年份:
    2011
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
QMHP: Quantum-field theoretical modeling and simulation of many-body entanglement of excitons and photons in semiconductor structures
QMHP:半导体结构中激子和光子多体纠缠的量子场理论建模和模拟
  • 批准号:
    0901784
  • 财政年份:
    2009
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: High-Performance, Verified Accelerator Programming
合作研究:SHF:中:高性能、经过验证的加速器编程
  • 批准号:
    2313024
  • 财政年份:
    2023
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    $ 29万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了