Recent Advances in Harmonic Analysis and Elliptic Partial Differential Equations

调和分析和椭圆偏微分方程的最新进展

基本信息

  • 批准号:
    0902155
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-02-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

Re Proposal: 0902155Principal Investigator: Mitrea, IrinaInstitution: University of VirginiaEffective period of award: 05/01/2009 -- 07/31, 2009This award will provide support to defray expenses of researchers participating in the Conference on Recent Advances in Harmonic Analysis and Elliptic Partial Differential Equations that will take place May 8-10, 2009 at the University of Virginia, Charlottesville, VA. Support will be provided to participants who do not currently hold NSF awards, with exceptions made for plenary speakers. It is understood that much of the funding will be directed to graduate students, postdocs, and junior faculty but that certain senior participants will be funded as well.The program of the event will feature about eight plenary speakers, who will deliver one-hour lectures, and a number of contributed talks. The main aim of the conference is to give a chance to young analysts to learn about the advances in the field of Harmonic Analysis and PDE from well established experts in the field and also to present their research work in front of an expert audience. Special attention is paid in involving women mathematicians, ranging from graduate students to senior researchers, in all aspects of the event. Several graduate students as well as an undergraduate student will participate at the meeting.
重新建议:0902155主要研究者:Mitrea,Irina机构:University of Punctuary有效期:05/01/2009 -- 07/31,2009该奖项将为参加将于5月8日至10日举行的调和分析和椭圆偏微分方程最新进展会议的研究人员提供费用支持,2009年在弗吉尼亚州夏洛茨维尔的弗吉尼亚大学。 支持将提供给参与者谁目前没有持有NSF奖,与例外的全体发言人。据了解,大部分资金将用于研究生,博士后和初级教师,但某些高级参与者也将获得资助。活动的计划将包括约8名全体演讲者,他们将发表一小时的演讲,以及一些贡献的演讲。会议的主要目的是让年轻的分析师有机会从该领域的知名专家那里了解谐波分析和偏微分方程领域的进展,并在专家观众面前展示他们的研究工作。特别注意让从研究生到高级研究人员的女数学家参与活动的各个方面。几个研究生和一个本科生将参加会议。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Irina Mitrea其他文献

The mixed problem for the Lamé system in a class of Lipschitz domains
  • DOI:
    10.1016/j.jde.2009.01.008
  • 发表时间:
    2009-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Russell M. Brown;Irina Mitrea
  • 通讯作者:
    Irina Mitrea

Irina Mitrea的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Irina Mitrea', 18)}}的其他基金

Singular Integral Operators for Higher-Order Systems in Non-Smooth Domains
非光滑域高阶系统的奇异积分算子
  • 批准号:
    1900938
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Perspectives in Harmonic Analysis, Geometric Measure Theory, and Partial Differential Equations, and Their Applications to Several Complex Variables
调和分析、几何测度理论和偏微分方程的观点及其在多个复变量中的应用
  • 批准号:
    1201478
  • 财政年份:
    2012
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
CAREER: Spectral Theory for Singular Integrals, Validated Numerics and Elliptic Problems in Non-Lipschitz Polyhedra: Research and Outreach
职业:非利普希茨多面体中奇异积分、验证数值和椭圆问题的谱理论:研究和推广
  • 批准号:
    1201736
  • 财政年份:
    2011
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
The 2011-2012 National Network of Sonia Kovalevsky Mathematics Days
2011-2012 索尼娅·科瓦列夫斯基全国网络数学日
  • 批准号:
    1134898
  • 财政年份:
    2011
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
A National Network of Sonia Kovalevsky Mathematics Days
索尼娅·科瓦列夫斯基数学日全国网络
  • 批准号:
    1028861
  • 财政年份:
    2010
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
CAREER: Spectral Theory for Singular Integrals, Validated Numerics and Elliptic Problems in Non-Lipschitz Polyhedra: Research and Outreach
职业:非利普希茨多面体中奇异积分、验证数值和椭圆问题的谱理论:研究和推广
  • 批准号:
    1048467
  • 财政年份:
    2010
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
CAREER: Spectral Theory for Singular Integrals, Validated Numerics and Elliptic Problems in Non-Lipschitz Polyhedra: Research and Outreach
职业:非利普希茨多面体中奇异积分、验证数值和椭圆问题的谱理论:研究和推广
  • 批准号:
    0547944
  • 财政年份:
    2006
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Mellin Transform and Global Optimization Techniques for Partial Differential Equations
偏微分方程的梅林变换和全局优化技术
  • 批准号:
    0513173
  • 财政年份:
    2004
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Mellin Transform and Global Optimization Techniques for Partial Differential Equations
偏微分方程的梅林变换和全局优化技术
  • 批准号:
    0245466
  • 财政年份:
    2003
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
  • 批准号:
    2338621
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Continuing Grant
Advances in rational operations in free analysis
自由分析中理性运算的进展
  • 批准号:
    2348720
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
REU Site: Recent Advances in Natural Language Processing
REU 网站:自然语言处理的最新进展
  • 批准号:
    2349452
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
  • 批准号:
    2350128
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
CAREER: Towards Watersheds as Water Treatment Plants through Advances in Distributed Sensing and Control
职业:通过分布式传感和控制的进步将流域打造为水处理厂
  • 批准号:
    2340176
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
  • 批准号:
    2340527
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Continuing Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
  • 批准号:
    2348384
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了