Perspectives in Harmonic Analysis, Geometric Measure Theory, and Partial Differential Equations, and Their Applications to Several Complex Variables
调和分析、几何测度理论和偏微分方程的观点及其在多个复变量中的应用
基本信息
- 批准号:1201478
- 负责人:
- 金额:$ 1.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides funding to help defray the expenses of participants in the conference "Perspectives in Harmonic Analysis, Geometric Measure Theory, and Partial Differential Equations, and Their Applications to Several Complex Variables" that will be held from September 13-15, 2012, on the campus of Temple University.This conference brings together a diverse group of mathematicians specializing in the fields of harmonic analysis, geometric measure theory, partial differential equations, and several complex variables with the overall objective of fostering collaborations between the participants on problems of common interest and facilitating access to each other's expertise. The purpose of the event is to present some of the recent significant theoretical advances in the aforementioned areas to an audience comprising both experts and young analysts. It is the hope of the organizers is that, as a by-product of the conference, a plan will emerge for coordinating attacks on certain problems arising in physics and engineering for which the lack of smoothness (caused by domains with intricate/irregular geometry, including slits and fractures) is a natural feature. The conference program provides ample opportunity for graduate students, postdocs, and other young scientists to present their work.
该奖项提供资金,以帮助支付参加会议的费用“在调和分析,几何测度理论和偏微分方程的观点,及其应用到几个复杂的变量”,将于2012年9月13日至15日在坦普尔大学校园举行。这次会议汇集了一个不同的数学家小组专门从事调和分析领域,几何测量理论,偏微分方程,和几个复杂的变量与促进参与者之间的合作,共同感兴趣的问题,并促进获得对方的专业知识的总体目标。该活动的目的是向专家和青年分析家介绍上述领域最近取得的一些重大理论进展。组织者的希望是,作为会议的副产品,将出现一个计划,以协调对物理和工程中出现的某些问题的攻击,这些问题缺乏光滑性(由复杂/不规则几何形状的域引起,包括裂缝和裂缝)是一个自然特征。会议计划为研究生,博士后和其他年轻科学家提供了充分的机会来展示他们的工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irina Mitrea其他文献
The mixed problem for the Lamé system in a class of Lipschitz domains
- DOI:
10.1016/j.jde.2009.01.008 - 发表时间:
2009-04-01 - 期刊:
- 影响因子:
- 作者:
Russell M. Brown;Irina Mitrea - 通讯作者:
Irina Mitrea
Irina Mitrea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irina Mitrea', 18)}}的其他基金
Singular Integral Operators for Higher-Order Systems in Non-Smooth Domains
非光滑域高阶系统的奇异积分算子
- 批准号:
1900938 - 财政年份:2019
- 资助金额:
$ 1.65万 - 项目类别:
Standard Grant
CAREER: Spectral Theory for Singular Integrals, Validated Numerics and Elliptic Problems in Non-Lipschitz Polyhedra: Research and Outreach
职业:非利普希茨多面体中奇异积分、验证数值和椭圆问题的谱理论:研究和推广
- 批准号:
1201736 - 财政年份:2011
- 资助金额:
$ 1.65万 - 项目类别:
Standard Grant
The 2011-2012 National Network of Sonia Kovalevsky Mathematics Days
2011-2012 索尼娅·科瓦列夫斯基全国网络数学日
- 批准号:
1134898 - 财政年份:2011
- 资助金额:
$ 1.65万 - 项目类别:
Standard Grant
A National Network of Sonia Kovalevsky Mathematics Days
索尼娅·科瓦列夫斯基数学日全国网络
- 批准号:
1028861 - 财政年份:2010
- 资助金额:
$ 1.65万 - 项目类别:
Standard Grant
CAREER: Spectral Theory for Singular Integrals, Validated Numerics and Elliptic Problems in Non-Lipschitz Polyhedra: Research and Outreach
职业:非利普希茨多面体中奇异积分、验证数值和椭圆问题的谱理论:研究和推广
- 批准号:
1048467 - 财政年份:2010
- 资助金额:
$ 1.65万 - 项目类别:
Standard Grant
Recent Advances in Harmonic Analysis and Elliptic Partial Differential Equations
调和分析和椭圆偏微分方程的最新进展
- 批准号:
0902155 - 财政年份:2009
- 资助金额:
$ 1.65万 - 项目类别:
Standard Grant
CAREER: Spectral Theory for Singular Integrals, Validated Numerics and Elliptic Problems in Non-Lipschitz Polyhedra: Research and Outreach
职业:非利普希茨多面体中奇异积分、验证数值和椭圆问题的谱理论:研究和推广
- 批准号:
0547944 - 财政年份:2006
- 资助金额:
$ 1.65万 - 项目类别:
Standard Grant
Mellin Transform and Global Optimization Techniques for Partial Differential Equations
偏微分方程的梅林变换和全局优化技术
- 批准号:
0513173 - 财政年份:2004
- 资助金额:
$ 1.65万 - 项目类别:
Standard Grant
Mellin Transform and Global Optimization Techniques for Partial Differential Equations
偏微分方程的梅林变换和全局优化技术
- 批准号:
0245466 - 财政年份:2003
- 资助金额:
$ 1.65万 - 项目类别:
Standard Grant
相似国自然基金
算子方法在Harmonic数恒等式中的应用
- 批准号:11201241
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Ricci-Harmonic流的长时间存在性
- 批准号:11126190
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
$ 1.65万 - 项目类别:
Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 1.65万 - 项目类别:
Standard Grant
Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
- 批准号:
2349756 - 财政年份:2024
- 资助金额:
$ 1.65万 - 项目类别:
Standard Grant
Conference: Madison Lectures in Harmonic Analysis
会议:麦迪逊谐波分析讲座
- 批准号:
2337344 - 财政年份:2024
- 资助金额:
$ 1.65万 - 项目类别:
Standard Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
- 批准号:
2348384 - 财政年份:2024
- 资助金额:
$ 1.65万 - 项目类别:
Standard Grant
Averaging operators and related topics in harmonic analysis
谐波分析中的平均运算符和相关主题
- 批准号:
2348797 - 财政年份:2024
- 资助金额:
$ 1.65万 - 项目类别:
Standard Grant
CAREER: Harmonic Analysis, Ergodic Theory and Convex Geometry
职业:调和分析、遍历理论和凸几何
- 批准号:
2236493 - 财政年份:2023
- 资助金额:
$ 1.65万 - 项目类别:
Continuing Grant
Conference: Harmonic and Complex Analysis: Modern and Classical
会议:调和与复分析:现代与古典
- 批准号:
2308417 - 财政年份:2023
- 资助金额:
$ 1.65万 - 项目类别:
Standard Grant