Critical groups of graphs and generalizations
关键的图表组和概括
基本信息
- 批准号:0902161
- 负责人:
- 金额:$ 12.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTPrincipal Investigator: Lorenzini, Dino Proposal Number: DMS - 0902161Institution: University of Georgia Research Foundation IncTitle: Critical groups of graphs and generalizationsThere is a vast body of mathematical knowledge concerning matrices and, in particular, two sets of invariants are widely used to study any integer matrix: the eigenvalues of the matrix, and the invariant factors of the matrix. The Picard group of a graph is an object that can be completely described in terms of the second set of invariants of the Laplacian of the graph. Its study was independently initiated almost 20 years ago by several researchers with widely different points of views, such as physicists, arithmetic geometers, and graph theorists. This research will investigate how the eigenvalues of the Laplacian affect the structure of the Picard group, and whether the recent Riemann-Roch theorem for graphs can be extended to a larger class of integer lattices.Graphs are used to model many different phenomenons naturally occurring in practical life, such as telephone networks, or electrical circuits. Naturally associated to a graph is a array called the Laplacian of the graph, from which the graph can be completely recovered. Finding relationships between the algebraic properties of this array and the combinatorial properties of the graph is one of the main theme of this research.
主要研究人员:Lorenzini,Dino建议编号:DMS-0902161机构:佐治亚大学研究基金会Inc标题:临界图群和推广有大量关于矩阵的数学知识,特别是,两组不变量被广泛用于研究任何整数矩阵:矩阵的特征值和矩阵的不变量因子。图的Picard群是可以用图的拉普拉斯不变量的第二不变量集完全描述的对象。这项研究是近20年前由几位观点迥异的研究人员独立发起的,这些研究人员包括物理学家、算术几何学家和图论学家。本研究将研究拉普拉斯本征值如何影响Picard群的结构,以及最近关于图的Riemann-Roch定理是否可以扩展到更大类的整数格。图被用来模拟实际生活中自然发生的许多不同的现象,如电话网络或电路。与图自然关联的是称为图的拉普拉斯的数组,从该数组可以完全恢复图。寻找这种数组的代数性质和图的组合性质之间的关系是本研究的主要主题之一。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dino Lorenzini其他文献
The critical polynomial of a graph
图的临界多项式
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0.7
- 作者:
Dino Lorenzini - 通讯作者:
Dino Lorenzini
Digital Dice: Computational Solutions to Practical Probability Problems by Paul J. Nahin
- DOI:
10.1007/s00283-009-9096-0 - 发表时间:
2009-10-08 - 期刊:
- 影响因子:0.400
- 作者:
Dino Lorenzini - 通讯作者:
Dino Lorenzini
Grothendieck’s pairing on component groups of Jacobians
- DOI:
10.1007/s002220100195 - 发表时间:
2002-05-01 - 期刊:
- 影响因子:3.600
- 作者:
Siegfried Bosch;Dino Lorenzini - 通讯作者:
Dino Lorenzini
Dino Lorenzini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dino Lorenzini', 18)}}的其他基金
RTG: Algebra, Algebraic Geometry, and Number Theory
RTG:代数、代数几何和数论
- 批准号:
1344994 - 财政年份:2014
- 资助金额:
$ 12.92万 - 项目类别:
Continuing Grant
Abelian varieties and Neron models
阿贝尔簇和 Neron 模型
- 批准号:
0302043 - 财政年份:2003
- 资助金额:
$ 12.92万 - 项目类别:
Continuing Grant
Diophantine Equations and Algebraic Points on Curves
丢番图方程和曲线上的代数点
- 批准号:
0101636 - 财政年份:2001
- 资助金额:
$ 12.92万 - 项目类别:
Standard Grant
Bad Reduction of Curves and Abelian Varieties
曲线和阿贝尔簇的不良约简
- 批准号:
0070522 - 财政年份:2000
- 资助金额:
$ 12.92万 - 项目类别:
Continuing Grant
相似海外基金
Symmetry: Groups, Graphs, Number Fields and Loops
对称性:群、图、数域和循环
- 批准号:
DP230101268 - 财政年份:2023
- 资助金额:
$ 12.92万 - 项目类别:
Discovery Projects
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
- 批准号:
RGPIN-2016-05397 - 财政年份:2022
- 资助金额:
$ 12.92万 - 项目类别:
Discovery Grants Program - Individual
Modelling and Searching Cohesive Groups over Heterogeneous Graphs
在异构图上建模和搜索内聚群
- 批准号:
DP220102191 - 财政年份:2022
- 资助金额:
$ 12.92万 - 项目类别:
Discovery Projects
Random Walks on Hyperbolic-Like Graphs and Groups
类双曲图和群上的随机游走
- 批准号:
575508-2022 - 财政年份:2022
- 资助金额:
$ 12.92万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Random walks on hyperbolic-like graphs and groups
在类双曲图和群上随机游走
- 批准号:
562189-2021 - 财政年份:2021
- 资助金额:
$ 12.92万 - 项目类别:
University Undergraduate Student Research Awards
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
- 批准号:
RGPIN-2016-05397 - 财政年份:2021
- 资助金额:
$ 12.92万 - 项目类别:
Discovery Grants Program - Individual
Distance-regular graphs with primitive automorphism groups
具有本原自同构群的距离正则图
- 批准号:
551329-2020 - 财政年份:2020
- 资助金额:
$ 12.92万 - 项目类别:
University Undergraduate Student Research Awards
Compound repositioning for Alzheimer's Disease using knowledge graphs, insurance claims data, and gene expression complementarity
使用知识图、保险索赔数据和基因表达互补性对阿尔茨海默病进行复合重新定位
- 批准号:
10338152 - 财政年份:2020
- 资助金额:
$ 12.92万 - 项目类别:
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
- 批准号:
RGPIN-2016-05397 - 财政年份:2020
- 资助金额:
$ 12.92万 - 项目类别:
Discovery Grants Program - Individual
Compound repositioning for Alzheimer's Disease using knowledge graphs, insurance claims data, and gene expression complementarity
使用知识图、保险索赔数据和基因表达互补性对阿尔茨海默病进行复合重新定位
- 批准号:
10554439 - 财政年份:2020
- 资助金额:
$ 12.92万 - 项目类别:














{{item.name}}会员




