Abelian varieties and Neron models

阿贝尔簇和 Neron 模型

基本信息

项目摘要

DMS-0302043Lorenzini, Dino J.AbstractTitle: Abelian varieties and Neron modelsOne of the main problems in arithmetic geometry is the determinationof the set of rational solutions of a system of polynomial equations with rational coefficients. One of the most successful techniquesin the study of such a set of solutions is to reduce the equations moduloa prime p and to study the set of solutions of the latter system of equations. It turns out that,in many situations, it is possible to describe a canonical wayof reducing the equations modulo p. When A/Kis an abelian variety, this canonical reduction is called the N\'eron modelof A/K. This reduction is the object of study in Lorenzini's first three research projects in this proposal. For instance, attached to any Neron modelis a finite group called the group of components. When the reduction is purelyadditive, it is conjectured that there are only finitely many possibilities for this group once the dimension g is fixed.Lorenzini's proposed research willshed more light on this conjecture and on other specialphenomena that arise when the reduction modulo a small prime pis not `good.'For centuries, human beings have been fascinated with solving Diophantine equations, named after the Greek mathematician Diophantus who livedin the third century AD. The field of Diophantine equationshas taken added significance in the modern world as it finds applications in a variety of areas, including encryption. Since the time of the Greeks, mathematicians have developedsophisticated tools to aid in solving equations. This investigator has developed some such tools, and is currently working on further contributions to this field.
算术几何中的一个主要问题是确定有理系数多项式方程组的有理解集。在研究这样一组解的过程中,最成功的方法之一是将方程简化为模a素数p,并研究 后一个方程组的解。 事实证明,在许多情况下,有可能描述一种规范的方式来减少方程模p。当A/K是一个阿贝尔簇时,这种规范的减少被称为A/K的N\'eron模型。这种减少是洛伦齐尼的前三个研究项目在这个建议的研究对象。例如,附加到任何Neron模型的是一个有限群,称为组件群。当约简是纯可加的时,证明了当维数g固定时,这个群只有100多种可能性。Lorenzini提出的研究将对这个猜想以及当约简模为小素数p时出现的其他特殊现象有更多的解释。“几个世纪以来,人类一直着迷于求解丢番图方程,这个方程是以生活在公元三世纪的希腊数学家丢番图命名的。丢番图方程在现代世界中具有更重要的意义,因为它在包括加密在内的各种领域都有应用。从古希腊时代起,数学家们就发展出了复杂的工具来帮助解方程。本研究员开发了一些此类工具,目前正在努力为这一领域做出进一步贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dino Lorenzini其他文献

The critical polynomial of a graph
图的临界多项式
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Dino Lorenzini
  • 通讯作者:
    Dino Lorenzini
Digital Dice: Computational Solutions to Practical Probability Problems by Paul J. Nahin
  • DOI:
    10.1007/s00283-009-9096-0
  • 发表时间:
    2009-10-08
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Dino Lorenzini
  • 通讯作者:
    Dino Lorenzini
Grothendieck’s pairing on component groups of Jacobians
  • DOI:
    10.1007/s002220100195
  • 发表时间:
    2002-05-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Siegfried Bosch;Dino Lorenzini
  • 通讯作者:
    Dino Lorenzini

Dino Lorenzini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dino Lorenzini', 18)}}的其他基金

RTG: Algebra, Algebraic Geometry, and Number Theory
RTG:代数、代数几何和数论
  • 批准号:
    1344994
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Critical groups of graphs and generalizations
关键的图表组和概括
  • 批准号:
    0902161
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Diophantine Equations and Algebraic Points on Curves
丢番图方程和曲线上的代数点
  • 批准号:
    0101636
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Bad Reduction of Curves and Abelian Varieties
曲线和阿贝尔簇的不良约简
  • 批准号:
    0070522
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

正则半单Hessenberg varieties上的代数拓扑
  • 批准号:
    11901218
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
  • 批准号:
    2401514
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
The 2nd brick-Brauer-Thrall conjecture via tau-tilting theory and representation varieties
通过 tau 倾斜理论和表示变体的第二个砖-布劳尔-萨尔猜想
  • 批准号:
    24K16908
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
  • 批准号:
    2337942
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
  • 批准号:
    2349015
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Algebraicity and Integral Models of Shimura Varieties
职业:志村品种的代数性和积分模型
  • 批准号:
    2338942
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Quasimaps to Nakajima Varieties
中岛品种的准地图
  • 批准号:
    2401380
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Diagonal Grobner Geometry of Generalized Determinantal Varieties
广义行列式簇的对角格罗布纳几何
  • 批准号:
    2344764
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Prosodic Event Annotation and Detection in Three Varieties of English
三种英语韵律事件标注与检测
  • 批准号:
    2316030
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Birational Geometry and K-stability of Algebraic Varieties
职业:双有理几何和代数簇的 K 稳定性
  • 批准号:
    2234736
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Producing more with less adapting high yielding barley varieties to low input agriculture
让高产大麦品种适应低投入农业,少花钱多产
  • 批准号:
    BB/Y513672/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了