Braided tensor categories, higher Picard groups, and classification of topological phases of matter
辫状张量类别、高皮卡德群以及物质拓扑相的分类
基本信息
- 批准号:2302267
- 负责人:
- 金额:$ 18.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project concerns the study of braided tensor categories and their higher-dimensional analogs. These are abstract algebraic structures consisting of objects that can be fused using certain natural rules. Such categories are indispensable in the study of classical and quantum symmetries. They are also used as mathematical models for a potential hardware design of a quantum computer. Namely, they correspond to topological phases of matter relevant to quantum computation and are used to predict the existence of new types of such phases, their behavior, and their physical realization. This project is motivated by these connections and deals with algebraic aspects of the theory of (higher) tensor categories: their structure, classification, and arithmetic properties. The emphasis is on categories that are most widely used in applications. Such categories admit an additional symmetry constraint called braiding that is used to model the interaction of quantum particles. Student recruitment and training are essential components of the proposed research activity.This project will address fundamental questions concerning the structure and classification of braided tensor categories and 2-categories. Categorical techniques will be employed to interpret and solve algebraic problems. Previously developed tools such as categorical Witt and Picard groups will be generalized and combined into higher-categorical groups, providing a useful homotopy-theoretic machinery. The concrete research problems include the following: (1) classification of braided fusion 2-categories and description of their Witt invariants, (2) computation of groups of minimal extensions corresponding to symmetry-protected topological phases of matter, (3) study of Hecke algebras associated with fusion categories and their integral forms, (4) classification of fiber functors on non-degenerate braided fusion categories using a categorical analog of Belavin-Drinfeld triples, and (5) classification of non-semisimple pointed braided tensor categories.This project is jointly funded by the Algebra and Number Theory program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本计画是关于辫状张量范畴及其高维类似物的研究。这些是抽象的代数结构,由可以使用某些自然规则融合的对象组成。这类范畴在经典对称性和量子对称性的研究中是必不可少的。 它们也被用作量子计算机潜在硬件设计的数学模型。也就是说,它们对应于与量子计算相关的物质的拓扑相,并用于预测新类型的这种相的存在,它们的行为及其物理实现。这个项目的动机是这些连接和处理代数方面的理论(高)张量范畴:其结构,分类和算术性质。重点是在应用程序中使用最广泛的类别。这样的范畴允许一个额外的对称约束,称为编织,用于模拟量子粒子的相互作用。学生招募和培训是本研究活动的重要组成部分。本项目将解决有关编织张量范畴和2-范畴的结构和分类的基本问题。分类技术将被用来解释和解决代数问题。以前开发的工具,如分类维特和皮卡德群将被推广和组合成更高的分类群,提供了一个有用的同伦理论的机器。具体研究问题包括:(1)辫子融合2-范畴的分类及其Witt不变量的刻画,(2)对应于物质的保序拓扑相的极小扩张群的计算,(3)与融合范畴相关的Hecke代数及其积分形式的研究,(4)使用Belavin-Drinfeld三元组的范畴类似物对非退化编织融合范畴上的纤维函子进行分类,(5)非-半单尖辫张量范畴。该项目由代数和数论计划和既定计划共同资助,以刺激竞争性研究(EPSCoR)。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitri Nikshych其他文献
Dmitri Nikshych的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmitri Nikshych', 18)}}的其他基金
Braided Tensor Categories, Their Structures, Symmetries, and Graded Extensions
编织张量类别、其结构、对称性和分级扩展
- 批准号:
1801198 - 财政年份:2018
- 资助金额:
$ 18.26万 - 项目类别:
Standard Grant
Weak Hopf Algebras and Dynamical Twisting of Quantum Groups
弱Hopf代数与量子群的动态扭曲
- 批准号:
0200202 - 财政年份:2002
- 资助金额:
$ 18.26万 - 项目类别:
Continuing Grant
相似国自然基金
非负张量分解的算法研究及其应用
- 批准号:11801074
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Tensor Train分解的两类张量优化问题的研究及其应用
- 批准号:11701132
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于Rational-Tensor(RTCam)摄像机模型的序列图像间几何框架研究
- 批准号:61072105
- 批准年份:2010
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Quivers in quantum symmetry: a path algebra framework for algebras in tensor categories
量子对称性中的颤动:张量范畴代数的路径代数框架
- 批准号:
2303334 - 财政年份:2023
- 资助金额:
$ 18.26万 - 项目类别:
Standard Grant
CAREER: Cohomology, classification, and constructions of tensor categories
职业:张量类别的上同调、分类和构造
- 批准号:
2146392 - 财政年份:2022
- 资助金额:
$ 18.26万 - 项目类别:
Continuing Grant
New constructions and techniques for tensor categories
张量类别的新结构和技术
- 批准号:
DP210100251 - 财政年份:2022
- 资助金额:
$ 18.26万 - 项目类别:
Discovery Projects
Conference on Quantum Symmetries: Tensor Categories, Topological Quantum Field Theories, and Vertex Algebras
量子对称会议:张量范畴、拓扑量子场论和顶点代数
- 批准号:
2228888 - 财政年份:2022
- 资助金额:
$ 18.26万 - 项目类别:
Standard Grant
Subfactors, Tensor Categories, and Higher Dimensional Algebra
子因子、张量类别和高维代数
- 批准号:
2000093 - 财政年份:2020
- 资助金额:
$ 18.26万 - 项目类别:
Standard Grant
Homological Techniques for Noncommutative Algebras and Tensor Categories
非交换代数和张量范畴的同调技术
- 批准号:
2001163 - 财政年份:2020
- 资助金额:
$ 18.26万 - 项目类别:
Standard Grant
Tensor Categories and Representations of Quantized Algebras
量化代数的张量范畴和表示
- 批准号:
2001318 - 财政年份:2020
- 资助金额:
$ 18.26万 - 项目类别:
Continuing Grant
Applications of Tensor Categories in Operator Algebras
张量范畴在算子代数中的应用
- 批准号:
2100531 - 财政年份:2020
- 资助金额:
$ 18.26万 - 项目类别:
Standard Grant
Study of algebraic methods for Morita dual of finite tensor categories and related algebraic structures
有限张量范畴Morita对偶的代数方法及相关代数结构研究
- 批准号:
20K03520 - 财政年份:2020
- 资助金额:
$ 18.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of Tensor Categories in Operator Algebras
张量范畴在算子代数中的应用
- 批准号:
1901082 - 财政年份:2019
- 资助金额:
$ 18.26万 - 项目类别:
Standard Grant