Field- and Current-Driven Domain Wall Dynamics in Microstructures

微结构中的场驱动和电流驱动畴壁动力学

基本信息

  • 批准号:
    0903812
  • 负责人:
  • 金额:
    $ 36.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-15 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

Technical Abstract:Magnetic domain walls can be manipulated at high-speeds and on nanometer spatial scales by applied magnetic fields and electric currents. Modern nanotechnology methods can be used to engineer and fabricate nanometer-scale magnetic wires. These model one-dimensional structures can serve as conduits for electric current and for guiding magnetic domain walls. This project utilizes magneto-optic techniques to probe the high-speed manipulation of magnetic domain walls in fabricated nanometer-scale magnetic structures. The goal of the work is to characterize and understand the (spin-torque) mechanisms that: 1) allow high-speed manipulation of magnetization on nanometer spatial scales by electric currents, and that: 2) govern energy loss and damping. The work is directly related to existing and emerging technology that relies on high-speed manipulation of magnetism on small spatial scales: magnetic meta materials, memory and logic structures, and imaging, radar and telecommunication technology. The research involves state-of-the-art materials synthesis and nanofabrication techniques, and addresses new phenomena that occur as a result of nanometer spatial constraints. It provides excellent education and training opportunities for the students and postdoctoral associates who work on the projects.Non-Technical Abstract:Electron spins in one-dimensional nanometer-scale structures of magnetic material (magnetic nanowires) form regions of uniform magnetization (domains) separated by a domain wall in which spin orientation reverses between the two opposing spin domains. The spin configuration in the nanostructure can be manipulated by the application of a magnetic field or an electric current. The ability to manipulate and probe electron spins (local magnetism) on nanometer scales at high speeds is technologically important: it provides the basis for magnetic cellular logic and related new device technology that could extend and improve existing microelectronic devices that digitally store and process information. This project explores high-speed manipulation of electron spins in magnetic nanostructures. The objective of the work is to determine and understand the mechanisms that allow electric current manipulation of spins and discover how material composition and geometrical constraints govern and limit the control of local magnetism on nanometer scales. The project provides a good venue for training the next generation of scientists, technologists, and teachers because it involves new phenomena and requires application of current state-of the-art research instruments and materials science/nanoscience technology.
技术摘要:在外加磁场和电流的作用下,可以在纳米级的空间尺度上高速操纵磁畴壁。现代纳米技术方法可以用来设计和制造纳米级的磁线。这些模型一维结构可以作为电流的管道和引导磁畴壁。该项目利用磁光技术来探索在制造的纳米级磁结构中对磁畴壁的高速操纵。这项工作的目标是描述和理解(自旋-扭矩)机制:1)允许通过电流在纳米空间尺度上高速操纵磁化,以及:2)控制能量损失和阻尼。这项工作与现有的和新兴的技术直接相关,这些技术依赖于在小空间尺度上高速操纵磁性:磁性元材料、记忆和逻辑结构以及成像、雷达和电信技术。这项研究涉及最先进的材料合成和纳米制造技术,并解决了由于纳米空间限制而出现的新现象。它为从事该项目的学生和博士后提供了极好的教育和培训机会。非技术摘要:在磁性材料(磁性纳米线)的一维纳米级结构中,电子自旋形成由磁区墙分隔的均匀磁化区域(磁区),其中两个相反的自旋区之间的自旋取向相反。纳米结构中的自旋构型可以通过施加磁场或电流来操纵。在纳米尺度上高速操纵和探测电子自旋(局部磁性)的能力具有重要的技术意义:它为磁性细胞逻辑和相关的新设备技术提供了基础,这些技术可以扩展和改进现有的以数字方式存储和处理信息的微电子设备。这个项目探索了磁性纳米结构中电子自旋的高速操纵。这项工作的目标是确定和了解允许电流操纵自旋的机制,并发现材料成分和几何约束如何在纳米尺度上控制和限制局部磁性。该项目为培训下一代科学家、技术员和教师提供了一个很好的场所,因为它涉及新的现象,需要应用当前最先进的研究仪器和材料科学/纳米科学技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Erskine其他文献

James Erskine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Erskine', 18)}}的其他基金

Field-and Current-Driven Domain-Wall Dynamics in Microstructures
微结构中的场驱动和电流驱动的畴壁动力学
  • 批准号:
    1206404
  • 财政年份:
    2012
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Continuing Grant
NIRT-Spin Distributions and Dynamics in Magnetic Nanostructured Materials
磁性纳米结构材料中的 NIRT-自旋分布和动力学
  • 批准号:
    0404252
  • 财政年份:
    2004
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Continuing Grant
REU Site: Undergraduate Research in Experimental Condensed Matter and Atomic/Molecular/Optical Physics
REU 网站:实验凝聚态物质和原子/分子/光学物理本科生研究
  • 批准号:
    0243848
  • 财政年份:
    2003
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Continuing Grant
Development of Instrumentation for Teaching and Research on Thin Magnetic Film Microstructure Switching Dynamics
薄膜微结构切换动力学教学科研仪器的研制
  • 批准号:
    0216726
  • 财政年份:
    2002
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Standard Grant
Experimental Studies of Thin Film Magnetism
薄膜磁性的实验研究
  • 批准号:
    9972113
  • 财政年份:
    1999
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Continuing Grant
Development of Instrumentation for Research on Magnetic Thin Films and Microstructures
磁性薄膜和微结构研究仪器的发展
  • 批准号:
    9704222
  • 财政年份:
    1997
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Continuing Grant
Experimental Studies of Thin Film Magnetism
薄膜磁性的实验研究
  • 批准号:
    9623494
  • 财政年份:
    1996
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Continuing Grant
Experimental Studies of Thin Film Magnetism
薄膜磁性的实验研究
  • 批准号:
    9303091
  • 财政年份:
    1993
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Continuing Grant
Experimental Studies of Thin Film Magnetism
薄膜磁性的实验研究
  • 批准号:
    8922359
  • 财政年份:
    1990
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Continuing Grant
Fundamental Studies of Ultra-thin Magnetic Films
超薄磁性薄膜的基础研究
  • 批准号:
    9000058
  • 财政年份:
    1990
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Standard Grant

相似海外基金

Motional Stark effect (MSE) measurements of microwave-driven current profile on MAST-Upgrade
MAST-Upgrade 上微波驱动电流分布的动斯塔克效应 (MSE) 测量
  • 批准号:
    2888730
  • 财政年份:
    2023
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Studentship
Studies of current profile formation in a lower-hybrid wave driven tokamak plasma
低混合波驱动托卡马克等离子体中电流分布形成的研究
  • 批准号:
    22K03573
  • 财政年份:
    2022
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Magnetization manipulation and antiferromagnetic dynamics driven by spin current in Weyl semimetals
外尔半金属中自旋电流驱动的磁化操纵和反铁磁动力学
  • 批准号:
    2210510
  • 财政年份:
    2022
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Continuing Grant
Gravity Current Driven Smoke Dispersion In a Stratified Ambient
分层环境中重力流驱动的烟雾扩散
  • 批准号:
    DP210101965
  • 财政年份:
    2021
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Discovery Projects
Research on Theoretical Formulation and Experimental Confirmation of the Spin Current Driven Einstein-de Haas Effect
自旋电流驱动的爱因斯坦-德哈斯效应的理论表述与实验验证研究
  • 批准号:
    20H01863
  • 财政年份:
    2020
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Current-driven dynamics of non-collinear antiferromagnetic spin structures for functional spintronic devices
用于功能自旋电子器件的非共线反铁磁自旋结构的电流驱动动力学
  • 批准号:
    20K15155
  • 财政年份:
    2020
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Grabbing HPV-driven head and neck cancer by the throat: understanding recurrence to improve current treatments and identify novel therapies
扼住 HPV 驱动的头颈癌的咽喉:了解复发情况以改进当前治疗方法并确定新疗法
  • 批准号:
    439812
  • 财政年份:
    2020
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Studentship Programs
Current-Driven Nonequilibrium Electrodynamics and Thermodynamics in Quantum Materials at the Nanoscale
纳米量子材料中电流驱动的非平衡电动力学和热力学
  • 批准号:
    1904576
  • 财政年份:
    2019
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Standard Grant
Dynamics of current-driven interacting magnetic domain walls
电流驱动相互作用磁畴壁的动力学
  • 批准号:
    410120019
  • 财政年份:
    2018
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Research Grants
Current-driven magnetic sources at microwave frequency
微波频率电流驱动磁源
  • 批准号:
    1708016
  • 财政年份:
    2017
  • 资助金额:
    $ 36.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了