Current-driven magnetic sources at microwave frequency

微波频率电流驱动磁源

基本信息

  • 批准号:
    1708016
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Microwave frequency sources are a critical component of technology for applications ranging from mobile devices to communications to computing. There is a need to develop extremely compact sources, and to develop sources that are agile, meaning their frequency can be shifted on the shortest possible timescale. A good candidate is nanoscale magnetic oscillators that produce highly tunable microwave frequencies through the application of d.c. current. Singly, these magnetic oscillators have insufficient output power and too broad a linewidth to be applied in technology, however, if they can be connected to each other so that they synchronize their microwave output, both the power and the linewidth problem can be overcome. While a few magnetic oscillators have been coupled together previously, it has been difficult to design them so that they synchronize in a scalable way. Additionally, understanding the nanoscale magnetic interactions between oscillators is an interesting scientific problem that has implications beyond technology. This project will train both undergraduate and graduate students in an interdisciplinary environment, and it will offer research experience for science teachers.In this proposal, the research team introduces three innovate concepts to overcome the challenge of scalably synchronizing nanoscale magnetic oscillators. First, they propose to design, model and fabricate lateral magnetic oscillators driven by the spin Hall effect in a periodic array using concepts from the emerging field of magnonics. Second, they will employ spatiotemporal magnetic microscopy to experimentally examine the dynamical modes of these structures, which will help reveal how individual STOs are coupled to its neighbors in real devices. This is a new opportunity offered by recent breakthroughs in lateral spin Hall oscillator devices because magnetic oscillator networks were previously based on direct injection, vertical transport devices. In those devices, the magnetic layers are buried and very difficult to image. The availability of imaging creates an opportunity to engineer devices based on specific, device-level insight. The third innovate concept is to use stroboscopic imaging to study loss mechanisms from magnetic modes. Traditionally, stroboscopic methods are blind to incoherent processes, like the coupling between spin wave modes that can lead to dynamically enhanced magnetic damping. By combining microwave driving fields that are both commensurate and incommensurate with the stroboscope, the research team will examine how energy can be transferred between useful magnetic modes and spurious magnetic modes. The insights from this research will enable new and better designs to synchronize magnetic oscillators.
微波频率源是用于从移动的设备到通信再到计算的应用的技术的关键组件。 有必要开发极其紧凑的源,并开发灵活的源,这意味着它们的频率可以在尽可能短的时间内改变。 一个很好的候选者是纳米磁性振荡器,它通过应用直流电流产生高度可调的微波频率。 这些磁振荡器单独存在输出功率不足、线宽过宽等技术上的应用问题,但如果将它们连接起来,使它们的微波输出同步,就可以克服功率和线宽的问题。 虽然之前已经将一些磁性振荡器耦合在一起,但很难设计它们,以便它们以可扩展的方式同步。 此外,了解振荡器之间的纳米级磁相互作用是一个有趣的科学问题,其影响超出了技术。 本项目将在跨学科的环境中培养本科生和研究生,并为科学教师提供研究经验。在本提案中,研究团队引入了三个创新概念,以克服可缩放同步纳米磁性振荡器的挑战。 首先,他们提出设计,建模和制造横向磁振荡器驱动的自旋霍尔效应在一个周期性的阵列使用的概念,从新兴领域的磁。 其次,他们将采用时空磁显微镜来实验性地检查这些结构的动力学模式,这将有助于揭示单个STO如何与真实的设备中的邻居耦合。 这是横向自旋霍尔振荡器器件的最新突破所提供的新机会,因为磁振荡器网络以前是基于直接注入、垂直传输器件的。 在这些设备中,磁性层被掩埋并且非常难以成像。成像的可用性为基于特定的设备级洞察设计设备创造了机会。第三个创新概念是使用频闪成像来研究磁模式的损耗机制。 传统上,频闪方法对非相干过程是盲目的,如自旋波模式之间的耦合,这可能导致动态增强的磁阻尼。通过结合与频闪仪相称和不相称的微波驱动场,研究小组将研究能量如何在有用的磁模式和寄生磁模式之间转移。 这项研究的见解将使新的和更好的设计,以同步磁性振荡器。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Fuchs其他文献

Sitting in our own soup? Combined sewers, climate change and NATURE-BASED SOLUTIONS FOR urban water MANAGEMENT in Berlin
坐在我们自己的汤里?
  • DOI:
    10.1016/j.nbsj.2024.100113
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tom Wild;Gregory Fuchs;McKenna Davis
  • 通讯作者:
    McKenna Davis

Gregory Fuchs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Fuchs', 18)}}的其他基金

EAGER: Quantum Manufacturing: Enabling Integrated Quantum Network Nodes
EAGER:量子制造:实现集成量子网络节点
  • 批准号:
    2240267
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Understanding antiferromagnetic spin-orbit heterostructures with a single-spin microscope
用单自旋显微镜了解反铁磁自旋轨道异质结构
  • 批准号:
    2004466
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
REU/RET Site: Interdisciplinary Research Experience for Undergraduates (REU) and Teachers (RET) in Materials
REU/RET 网站:材料领域本科生 (REU) 和教师 (RET) 的跨学科研究经验
  • 批准号:
    1460428
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
CAREER: Quantum Information Science with Single Defects in ZnO
职业:ZnO 单一缺陷的量子信息科学
  • 批准号:
    1254530
  • 财政年份:
    2013
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
基于Cache的远程计时攻击研究
  • 批准号:
    60772082
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
  • 批准号:
    2344664
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
  • 批准号:
    10727356
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
The role of stress, social support, and brain function on alcohol misuse in women
压力、社会支持和大脑功能对女性酗酒的影响
  • 批准号:
    10676428
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Elucidating the Role of Endothelial Dysfunction in Alzheimer Disease: Towards A New Data-Driven Disease Model
阐明内皮功能障碍在阿尔茨海默病中的作用:建立新的数据驱动疾病模型
  • 批准号:
    10737969
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Information-Theoretic Surprise-Driven Approach to Enhance Decision Making in Healthcare
信息论惊喜驱动方法增强医疗保健决策
  • 批准号:
    10575550
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Microstructural Injury to the Brainstem and Spinal Cord Determines Outcomes in CM and SM
脑干和脊髓的微结构损伤决定 CM 和 SM 的结果
  • 批准号:
    10629123
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
SCH: Using Data-Driven Computational Biomechanics to Disentangle Brain Structural Commonality, Variability, and Abnormality in ASD
SCH:利用数据驱动的计算生物力学来解开 ASD 中脑结构的共性、变异性和异常性
  • 批准号:
    10814620
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Data-Driven Exploration of Exposomic Influences on the Onset of Alcohol Use During Adolescence
数据驱动的暴露体对青春期饮酒影响的探索
  • 批准号:
    10826809
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
A Modular Framework for Data-Driven Neurogenetics to Predict Complex and Multidimensional Autistic Phenotypes
数据驱动神经遗传学预测复杂和多维自闭症表型的模块化框架
  • 批准号:
    10826595
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Targeting Inflammation-Induced Changes in Brain Reward Signaling and Motivational Deficits in Patients with Schizophrenia Using an Anti-Inflammatory Challenge
使用抗炎挑战来针对精神分裂症患者炎症引起的大脑奖赏信号变化和动机缺陷
  • 批准号:
    10568058
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了