RI: Medium: Collaborative Research: Physically Grounded Object Recognition
RI:媒介:协作研究:物理接地物体识别
基本信息
- 批准号:0904209
- 负责人:
- 金额:$ 41.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal Title: RI: Medium: Collaborative Research: Physically Grounded ObjectRecognitionInstitution: Carnegie-Mellon UniversityAbstract Date: 05/05/09"This award is funded under the American Recovery and Reinvestment Act of 2009(Public Law 111-5)."Although the world is very much three-dimensional, most of today's approaches tovisual object recognition essentially reduce the problem to one of 2D patternclassification, where rectangular image patches are independently compared to storedtemplates to produce isolated object labels within the image. This project aims toaccount for the three-dimensional nature of the real world by exploring qualitativegeometric reasoning in terms of 3D spatial relationships between scene components,category-level object models, and global scene understanding.The project is organized around two major research areas. Qualitative 3D sceneparsing: A central part of our effort will be to develop qualitative 3D models of the scenethat describe the depicted objects and surfaces and their physical relations. Groundingobjects in the scene: We integrate the geometric representation of the scene and thecorresponding 3D spatial relations with the object recognition process by (1) inferringthe set of likely object identities based on 3D relations among scene components; (2)predicting the most likely object locations from the scene layout; and (3) using theocclusion relations and depth ordering to predict the parts of objects that may be visiblein the scene.The project is anticipated to result in major advances in 3D scene understanding fromphotographs, a critical enabling technology for a wide range of applications includingautonomous systems, health care, human-computer interaction, assistive technology,image retrieval, industrial and personal robotics, manufacturing, scientific imageanalysis, surveillance and security, and transportation.NATIONAL SCIENCE FOUNDATIONProposal AbstractProposal:0905402 PI Name:Hebert, MartialPrinted from eJacket: 05/06/09 Page 1 of 1
提案标题:RI:中等:合作研究:物理接地对象命名机构:麦基梅隆大学摘要日期:05/05/09“这个奖项是根据2009年美国复苏和再投资法案(公法111-5)资助。“虽然世界是非常三维的,但今天的大多数视觉对象识别方法基本上将问题简化为2D模式分类,其中矩形图像块独立地与存储的模板进行比较,以在图像中产生孤立的对象标签。这个项目的目的是通过探索场景组件之间的三维空间关系,类别级对象模型和全球场景理解的定性几何推理来解释真实的世界的三维本质。定性3D场景解析:我们努力的一个核心部分将是开发场景的定性3D模型,描述所描绘的对象和表面及其物理关系。场景中的接地对象:我们将场景的几何表示和相应的三维空间关系与目标识别过程相结合,通过(1)基于场景组件之间的三维关系推断出可能的目标身份集合,(2)从场景布局中预测出最可能的目标位置,(3)从场景中提取出最可能的目标位置。以及(3)使用遮挡关系和深度排序来预测场景中可能可见的物体部分。该项目预计将在以下方面取得重大进展:从照片中理解3D场景,这是一项关键的使能技术,广泛应用于自主系统、医疗保健、人机交互、辅助技术、图像检索、工业和个人机器人、制造业、科学图像分析、监控和安全以及交通运输等领域。科学基金会提案摘要提案:0905402 PI姓名:Hebert,Martial打印自eJacket:05/06/09第1页,共1页
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Derek Hoiem其他文献
Learning Curves for Analysis of Deep Networks
深度网络分析的学习曲线
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Derek Hoiem;Tanmay Gupta;Zhizhong Li;Michal Shlapentokh - 通讯作者:
Michal Shlapentokh
Object Detection Analysis Code (v2)
物体检测分析代码 (v2)
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Derek Hoiem - 通讯作者:
Derek Hoiem
Analysis of Reviews for CVPR 2012
CVPR 2012 评论分析
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
A. Khosla;Derek Hoiem;Serge J. Belongie - 通讯作者:
Serge J. Belongie
Opportunistic Use of Vision to Push Back the Path-Planning Horizon
机会性地利用视觉来推迟路径规划的范围
- DOI:
10.1109/iros.2006.281676 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Bart C. Nabbe;Derek Hoiem;Alexei A. Efros;M. Hebert - 通讯作者:
M. Hebert
Silhouette Guided Point Cloud Reconstruction beyond Occlusion
超越遮挡的轮廓引导点云重建
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Chuhang Zou;Derek Hoiem - 通讯作者:
Derek Hoiem
Derek Hoiem的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Derek Hoiem', 18)}}的其他基金
RI: Small: Semantic 3D Neural Rendering Field Models that are Accurate, Complete, Flexible, and Scalable
RI:小型:准确、完整、灵活且可扩展的语义 3D 神经渲染场模型
- 批准号:
2312102 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
Continuing Grant
SBIR Phase I: Analysis of Progress Photos for Indoor Construction Progress Monitoring
SBIR 第一阶段:室内施工进度监控的进度照片分析
- 批准号:
1819248 - 财政年份:2018
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
RI: Small: Recovering Object 3D Shape and Material from Isolated Images
RI:小:从孤立图像中恢复对象 3D 形状和材质
- 批准号:
1421521 - 财政年份:2014
- 资助金额:
$ 41.6万 - 项目类别:
Continuing Grant
CAREER: Large-Scale Recognition Using Shared Structures, Flexible Learning, and Efficient Search
职业:使用共享结构、灵活学习和高效搜索的大规模识别
- 批准号:
1053768 - 财政年份:2011
- 资助金额:
$ 41.6万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312374 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312373 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313149 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
- 批准号:
2312955 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
- 批准号:
2313137 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313150 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
Continuing Grant