SHF: Medium: Collaborative Research: Throughput-Driven Multi-Core Architecture and a Compilation System
SHF:中:协作研究:吞吐量驱动的多核架构和编译系统
基本信息
- 批准号:0905208
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computing substrates such as multi-core processors or Field Programmable Gate Arrays (FPGAs) share the characteristic of having two-dimensional arrays of processing elements interconnected by a routing fabric. At one end of the spectrum, FPGAs have single-output programmable logic functions, and at the other end, multi-core chips have complex 32/64-bit processing cores. For different applications, different programmable substrates produce the best area-power-performance tradeoffs. This project is developing a large-scale multi-core substrate that has hundreds or thousands of simple processing cores along with a compilation system that maps computations onto this fabric. This many-core architecture, named Diastolic Array, is coarser-grained than FPGAs but finer-grained than conventional multi-cores. To efficiently exploit such a large number of processing cores, the architecture needs spatially mapping a computation to processing cores and communication to the point-to-point interconnect network. To be practically viable, this mapping process must be automated and effective. The project addresses this challenge by simultaneously developing hardware architecture and a compilation system. A diastolic array chip is expected to outperform FPGAs or general-purpose processors on an interesting class of applications, enabling more efficient prototyping and low-volume production. The outcomes of this project such as statically-configured interconnection architecture with associated algorithms for routing and resource allocation will also be applicable to other multi-core designs. Finally, the project is developing a new parallel processing module for an undergraduate computer architecture class to give sophomores early exposure to parallel hardware, experience with writing parallel programs and using compilers that exploit parallelism.
诸如多核处理器或现场可编程门阵列(FPGA)的计算基板共享具有通过路由结构互连的处理元件的二维阵列的特性。一方面,FPGA具有单输出可编程逻辑功能,另一方面,多核芯片具有复杂的32/64位处理核心。对于不同的应用,不同的可编程衬底产生最佳的面积-功率-性能权衡。这个项目正在开发一个大规模的多核基板,它有数百或数千个简单的处理核心沿着编译系统,将计算映射到这个结构上。这种多核架构名为Diastolic Array,比FPGA粒度更粗,但比传统的多核粒度更细。为了有效地利用这样大量的处理核,架构需要在空间上将计算映射到处理核并且将通信映射到点对点互连网络。为了切实可行,这一映射过程必须自动化和有效。该项目通过同时开发硬件架构和编译系统来解决这一挑战。舒张期阵列芯片有望在一类有趣的应用中优于FPGA或通用处理器,从而实现更高效的原型设计和小批量生产。该项目的成果,如静态控制fi具有用于路由和资源分配的关联算法的互连架构也将适用于其他多核设计。最后,该项目正在开发一个新的并行处理模块,为本科计算机体系结构类,让初学者早期接触并行硬件,编写并行程序的经验,并使用编译器,利用并行。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gookwon Suh其他文献
Gookwon Suh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gookwon Suh', 18)}}的其他基金
SHF: Small: Dynamic Gating and Adaptation of Deep Neural Networks for Efficient Inference and Training
SHF:小型:深度神经网络的动态门控和适应,用于高效推理和训练
- 批准号:
2007832 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
TWC: Medium: Language-Hardware Co-Design for Practical and Verifiable Information Flow Control
TWC:媒介:用于实用且可验证的信息流控制的语言硬件协同设计
- 批准号:
1513797 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
TWC: Small: Flash Memory for Ubiquitous Hardware Security Functions
TWC:小型:用于无处不在的硬件安全功能的闪存
- 批准号:
1223955 - 财政年份:2012
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CPS:Small:Non-Volatile Computing for Embedded Cyber-Physical Systems
CPS:小型:嵌入式网络物理系统的非易失性计算
- 批准号:
0932069 - 财政年份:2009
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAREER: Flexible Multi-Core Substrate for Trustworthy Computing Systems
职业:用于值得信赖的计算系统的灵活多核基板
- 批准号:
0746913 - 财政年份:2008
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: High-Performance, Verified Accelerator Programming
合作研究:SHF:中:高性能、经过验证的加速器编程
- 批准号:
2313024 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
- 批准号:
2311295 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant