RI: Medium: Collaborative Research: Methods of Empirical Mechanism Design
RI:媒介:协作研究:经验机制设计方法
基本信息
- 批准号:0905234
- 负责人:
- 金额:$ 40.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The design of computational systems that support group decisions, allocate resources to distributed tasks, or mediate social interactions is fundamentally different from the corresponding design problem serving individual or centralized users. When multiple parties, or agents, are involved, the designer's objectives are complicated by the fact that the interests of these parties are rarely, if ever, perfectly aligned. The field of mechanism design offers a theoretical framework that directly addresses the issue of incentives as it relates to the design of multiagent systems. However, this purely analytical approach carries with it inherent practical limitations. The investigators introduce a new approach, empirical mechanism design (EMD), whose premise is to extend the basic foundation of mechanism design with empirical methods such as simulation and statistical analysis. These extensions promise to dramatically expand the scope of mechanism design beyond the small-scale, stylized, or idealized domains to which it has been predominantly limited to date. The project will investigate several concrete EMD problems, within the general theme of market design. Improved market design has significant implications for the public and private sectors. In public policy, market-based approaches are likely to play a major role in, for example, instituting measures to cope with climate change, banking reform and regulation, and adoption of new energy sources. In the commercial domain, new markets for advertising placement, computational services, and other goods will also entail significant mechanism design efforts. Regardless of the sector, design outcomes bear on important social objectives including efficiency, transparency, and stability (e.g., of financial relationships). An empirical basis for evaluating candidate mechanisms will complement existing theoretical perspectives, enriching the tools available to designers and other stakeholders.
支持群体决策、为分布式任务分配资源或调解社会互动的计算系统的设计与服务于个人或集中式用户的相应设计问题有着根本的不同。当涉及多方或代理人时,设计者的目标会因为这些各方的利益很少(如果有的话)完全一致而变得复杂。机制设计领域提供了一个理论框架,直接解决激励问题,因为它涉及到多智能体系统的设计。然而,这种纯粹分析性的方法具有内在的实际局限性。研究者们提出了一种新的方法,经验机制设计(EMD),其前提是扩展机制设计的基本基础与经验方法,如模拟和统计分析。这些扩展承诺大大扩大机制设计的范围,超越小规模的,程式化的,或理想化的领域,它一直主要局限于日期。该项目将调查几个具体的EMD问题,在市场设计的一般主题。改进市场设计对公共和私营部门具有重大影响。在公共政策方面,基于市场的办法可能在制定科普气候变化的措施、银行改革和监管以及采用新能源等方面发挥重要作用。在商业领域,广告投放、计算服务和其他商品的新市场也将需要大量的机制设计工作。无论哪个部门,设计成果都关系到重要的社会目标,包括效率、透明度和稳定性(例如,财务关系)。评估候选机制的经验基础将补充现有的理论观点,丰富设计者和其他利益攸关方可用的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy Greenwald其他文献
The First International Trading Agent Competition: Autonomous Bidding Agents
首届国际贸易代理大赛:自主投标代理
- DOI:
10.1007/s10660-005-6158-z - 发表时间:
2005 - 期刊:
- 影响因子:3.9
- 作者:
Peter Stone;Amy Greenwald - 通讯作者:
Amy Greenwald
Amy Greenwald的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy Greenwald', 18)}}的其他基金
Collaborative Research: Data-driven Mechanism Design for Combinatorial Auctions and Exchanges
协作研究:数据驱动的组合拍卖和交易机制设计
- 批准号:
1761546 - 财政年份:2018
- 资助金额:
$ 40.68万 - 项目类别:
Standard Grant
RI: Small: Agent-Assisted Trading in Real-World Auctions
RI:小型:现实世界拍卖中的代理辅助交易
- 批准号:
1217761 - 财政年份:2012
- 资助金额:
$ 40.68万 - 项目类别:
Standard Grant
EAGER: The Artemis Project: Evaluation and Expansion
EAGER:阿耳忒弥斯项目:评估和扩展
- 批准号:
1059570 - 财政年份:2010
- 资助金额:
$ 40.68万 - 项目类别:
Standard Grant
Workshop for Women in Machine Learning
机器学习女性研讨会
- 批准号:
0647431 - 财政年份:2006
- 资助金额:
$ 40.68万 - 项目类别:
Standard Grant
Efficient Link Analysis: A Hierarchical Voting System
高效的链接分析:分层投票系统
- 批准号:
0534586 - 财政年份:2005
- 资助金额:
$ 40.68万 - 项目类别:
Continuing Grant
PECASE: Computational Social Choice Theory: Strategic Agents and Iterative Mechanisms
PECASE:计算社会选择理论:战略主体和迭代机制
- 批准号:
0133689 - 财政年份:2002
- 资助金额:
$ 40.68万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313149 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312374 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312373 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
- 批准号:
2312955 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
- 批准号:
2313137 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313150 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Continuing Grant