CIF: Medium: Analog Architectures for Optimization in Signal Processing
CIF:中:用于优化信号处理的模拟架构
基本信息
- 批准号:0905346
- 负责人:
- 金额:$ 90.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract:Modern techniques giving the best performance for acquiring and processing signals/images rely on repeatedly solving mathematical optimization problems which can be computationally expensive. This research involves advancing, by orders of magnitude, the state of the art for solving an important class of these problems. Rather than developing algorithms tailored to current digital computational platform, the investigators depart completely from this current line of research to study analog architectures for solving these problems. These analog architectures, when fully developed, have the potential for dramatic gains in speed and power efficiency over their digital counterparts. This research project is inherently multidisciplinary, as it combines recent advances in computational neuroscience, signal processing, and reconfigurable VLSI architectures. Among other applications, these systems enable reductions in the time needed to acquire a magnetic resonance image (MRI).This project focuses primarily on solving optimization programs combining a mean-squared error data fidelity term with a sparsity inducing cost function (e.g., the L1 norm) via an analog dynamical system architecture. Specifically , the project contains two intertwined threads: circuit implementation and mathematical analysis. The goal of the circuit implementation thread is to produce a analog circuit which solves significant optimization programs (e.g., tens of thousands of variables) substantially faster than state-of-the-art digital solutions. The investigators leverage recent advances in reconfigurable analog architectures to achieve efficient designs at this large scale. The analysis thread includes deriving bounds on the circuit convergence time and generalizing the architecture to include other relevant signal processing problems. The research also involves applying this analog architecture as a nonlinear "filter" which continuously reacts to changes in the input.
翻译后摘要:现代技术的最佳性能的采集和处理信号/图像依赖于反复求解数学优化问题,这可能是计算昂贵的。 这项研究涉及推进,由数量级,解决这些问题的一个重要类的最先进的。 研究人员没有开发针对当前数字计算平台的算法,而是完全脱离当前的研究路线,研究解决这些问题的模拟架构。这些模拟架构在充分开发后,与数字架构相比,有可能在速度和功率效率方面大幅提高。 这个研究项目本质上是多学科的,因为它结合了计算神经科学,信号处理和可重构VLSI架构的最新进展。 在其他应用中,这些系统能够减少获取磁共振图像(MRI)所需的时间。该项目主要集中在解决将均方误差数据保真度项与稀疏性诱导成本函数(例如,L1范数)。 具体来说,该项目包含两个相互交织的线程:电路实现和数学分析。电路实现线程的目标是产生解决重要优化程序(例如,成千上万的变量),大大快于最先进的数字解决方案。 研究人员利用可重构模拟架构的最新进展来实现这种大规模的高效设计。 分析线程包括推导电路收敛时间的界限,并将架构推广到包括其他相关的信号处理问题。 该研究还涉及将这种模拟架构应用为非线性“滤波器”,该非线性“滤波器”不断对输入的变化做出反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Rozell其他文献
Longitudinal Changes in Subcallosal Cingulate Local Field Potential Features in Patients Undergoing DBS for Treatment-Resistant Depression
- DOI:
10.1016/j.biopsych.2020.02.503 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
Sankaraleengam Alagapan;Allison Waters;Ashan Veerakumar;Mosadoluwa Obatusin;Vineet Tiruvadi;Andrea Crowell;Patricio Riva-Posse;Robert Butera;Helen Mayberg;Christopher Rozell - 通讯作者:
Christopher Rozell
Chronic electrophysiological biomarker dynamics and implications for personalized DBS for depression
慢性电生理生物标志物动态变化及其对抑郁症个性化深部脑刺激的影响
- DOI:
10.1016/j.brs.2024.12.062 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:8.400
- 作者:
Helen S. Mayberg;Sankar Alagapan;Elif Ceren Fitoz;Tanya Nauvel;Stephen Heisig;Kiseung Choi;Martijn Figee;Patricio Riva Posse;Christopher Rozell - 通讯作者:
Christopher Rozell
437. A Novel Subcallosal Cingulate Biomarker of Deep Brain Stimulation Mediated Stable Depression Recovery
- DOI:
10.1016/j.biopsych.2023.02.677 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Sankaraleengam Alagapan;Stephen Heisig;Ki Seung Choi;Allison Waters;Ashan Veerakumar;Vineet Tiruvadi;Mosadoluwa Obatusin;Tanya Nauvel;Jungho Cha;Andrea Crowell;Martijn Figee;Patricio Riva Posse;Robert Butera;Helen Mayberg;Christopher Rozell - 通讯作者:
Christopher Rozell
Local Dynamics Changes Accompanying Stable Recovery in Subcallosal Cingulate Deep Brain Stimulation for Treatment-Resistant Depression
- DOI:
10.1016/j.biopsych.2022.02.124 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Sankaraleengam Alagapan;Stephen Heisig;Patricio Riva Posse;Helen Mayberg;Christopher Rozell - 通讯作者:
Christopher Rozell
280. Enhancement of Neural Interoceptive Processing Observed in Responders to Deep Brain Stimulation for Treatment Resistant Depression
- DOI:
10.1016/j.biopsych.2023.02.520 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Elisa Xu;Samantha Pitts;Jacob Dahill-Fuchel;Sara Scherrer;Jacqueline Overton;Tanya Nauvel;Patricio Riva Posse;Andrea Crowell;Martijn Figee;Jaimie Gowatsky;Sankar Alagapan;Christopher Rozell;Kisueng Choi;Helen Mayberg;Allison Waters - 通讯作者:
Allison Waters
Christopher Rozell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Rozell', 18)}}的其他基金
2022 Collaborative Research in Computational Neuroscience (CRCNS) Principal Investigators Meeting
2022年计算神经科学合作研究(CRCNS)首席研究员会议
- 批准号:
2236749 - 财政年份:2022
- 资助金额:
$ 90.66万 - 项目类别:
Standard Grant
CAREER: Exploiting low-dimensional structure in data for more effective, efficient and interactive machine intelligence
职业:利用数据的低维结构来实现更有效、高效和交互式的机器智能
- 批准号:
1350954 - 财政年份:2014
- 资助金额:
$ 90.66万 - 项目类别:
Continuing Grant
CIF: Medium: Collaborative Research: Tracking low-dimensional information in data streams and dynamical systems
CIF:中:协作研究:跟踪数据流和动力系统中的低维信息
- 批准号:
1409422 - 财政年份:2014
- 资助金额:
$ 90.66万 - 项目类别:
Continuing Grant
Collaborative research: Leveraging low-dimensional structure for time series analysis and prediction
合作研究:利用低维结构进行时间序列分析和预测
- 批准号:
0830456 - 财政年份:2008
- 资助金额:
$ 90.66万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 90.66万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
- 批准号:
2327438 - 财政年份:2024
- 资助金额:
$ 90.66万 - 项目类别:
Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
$ 90.66万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 90.66万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 90.66万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 90.66万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 90.66万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 90.66万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 90.66万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 90.66万 - 项目类别:
Standard Grant