CAREER: Exploiting low-dimensional structure in data for more effective, efficient and interactive machine intelligence
职业:利用数据的低维结构来实现更有效、高效和交互式的机器智能
基本信息
- 批准号:1350954
- 负责人:
- 金额:$ 47.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The rapid increase in sensor data is revolutionizing many areas of technology, defense, and scientific discovery. Fortunately, despite data being high-dimensional, various aspects of the data can frequently be characterized as having low-dimensional geometric structure. This research project dramatically improves machine intelligence by exploiting this geometric structure for more effective, efficient and interactive data analysis systems. Complementary to these technical objectives, this project also aims to engage, recruit, and educate a diverse collection of students to STEM careers by developing novel curricular and outreach materials that illustrate how mathematics can be used in information systems. The potential benefits of this project are wide ranging in areas where data plays a fundamental role.Improving machine intelligence requires understanding how to best exploit the underlying low-dimensional structure in data for a given type of task, and this project is guided by three research objectives toward this goal. The first objective enhances machine effectiveness by exploiting the fact that multiple observations of the same phenomenon are often related by movement along a manifold, with a particular focus on the canonical computer vision problem of invariant object recognition. The second objective seeks to improve computational efficiency by developing dimensionality reduction techniques for manifold-modeled data that preserves information about nonlinear feature-space mappings. The third objective seeks to leverage interactivity to fully "close the loop" between between humans and machines while learning low-dimensional information from a human expert (an extension of the active learning paradigm). The project also pursues two educational objectives, including developing curriculum modules for pre-college outreach and integrating neural systems content into the ECE curriculum to illustrate the connections between quantitative methods and intelligent systems.
传感器数据的快速增长正在彻底改变技术、国防和科学发现的许多领域。 幸运的是,尽管数据是高维的,但数据的各个方面通常可以被表征为具有低维几何结构。该研究项目通过利用这种几何结构来实现更有效,高效和交互式的数据分析系统,从而大大提高了机器智能。 作为对这些技术目标的补充,该项目还旨在通过开发新颖的课程和宣传材料,说明如何在信息系统中使用数学,来吸引、招募和教育各种学生从事STEM职业。 该项目的潜在益处广泛存在于数据发挥基础作用的领域。提高机器智能需要了解如何针对特定类型的任务最好地利用数据中的底层低维结构,该项目以三个研究目标为指导。 第一个目标通过利用同一现象的多个观察结果通常与沿沿着流形的运动相关的事实来增强机器效率,特别关注不变对象识别的规范计算机视觉问题。 第二个目标旨在提高计算效率,通过开发降维技术的流形建模的数据,保留非线性特征空间映射的信息。 第三个目标是利用交互性来完全“关闭”人类和机器之间的循环,同时从人类专家那里学习低维信息(主动学习范式的扩展)。 该项目还追求两个教育目标,包括开发大学预科推广课程模块,并将神经系统内容纳入欧洲经委会课程,以说明定量方法与智能系统之间的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Rozell其他文献
Longitudinal Changes in Subcallosal Cingulate Local Field Potential Features in Patients Undergoing DBS for Treatment-Resistant Depression
- DOI:
10.1016/j.biopsych.2020.02.503 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
Sankaraleengam Alagapan;Allison Waters;Ashan Veerakumar;Mosadoluwa Obatusin;Vineet Tiruvadi;Andrea Crowell;Patricio Riva-Posse;Robert Butera;Helen Mayberg;Christopher Rozell - 通讯作者:
Christopher Rozell
437. A Novel Subcallosal Cingulate Biomarker of Deep Brain Stimulation Mediated Stable Depression Recovery
- DOI:
10.1016/j.biopsych.2023.02.677 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Sankaraleengam Alagapan;Stephen Heisig;Ki Seung Choi;Allison Waters;Ashan Veerakumar;Vineet Tiruvadi;Mosadoluwa Obatusin;Tanya Nauvel;Jungho Cha;Andrea Crowell;Martijn Figee;Patricio Riva Posse;Robert Butera;Helen Mayberg;Christopher Rozell - 通讯作者:
Christopher Rozell
Chronic electrophysiological biomarker dynamics and implications for personalized DBS for depression
慢性电生理生物标志物动态变化及其对抑郁症个性化深部脑刺激的影响
- DOI:
10.1016/j.brs.2024.12.062 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:8.400
- 作者:
Helen S. Mayberg;Sankar Alagapan;Elif Ceren Fitoz;Tanya Nauvel;Stephen Heisig;Kiseung Choi;Martijn Figee;Patricio Riva Posse;Christopher Rozell - 通讯作者:
Christopher Rozell
280. Enhancement of Neural Interoceptive Processing Observed in Responders to Deep Brain Stimulation for Treatment Resistant Depression
- DOI:
10.1016/j.biopsych.2023.02.520 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Elisa Xu;Samantha Pitts;Jacob Dahill-Fuchel;Sara Scherrer;Jacqueline Overton;Tanya Nauvel;Patricio Riva Posse;Andrea Crowell;Martijn Figee;Jaimie Gowatsky;Sankar Alagapan;Christopher Rozell;Kisueng Choi;Helen Mayberg;Allison Waters - 通讯作者:
Allison Waters
Local Dynamics Changes Accompanying Stable Recovery in Subcallosal Cingulate Deep Brain Stimulation for Treatment-Resistant Depression
- DOI:
10.1016/j.biopsych.2022.02.124 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Sankaraleengam Alagapan;Stephen Heisig;Patricio Riva Posse;Helen Mayberg;Christopher Rozell - 通讯作者:
Christopher Rozell
Christopher Rozell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Rozell', 18)}}的其他基金
2022 Collaborative Research in Computational Neuroscience (CRCNS) Principal Investigators Meeting
2022年计算神经科学合作研究(CRCNS)首席研究员会议
- 批准号:
2236749 - 财政年份:2022
- 资助金额:
$ 47.48万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Tracking low-dimensional information in data streams and dynamical systems
CIF:中:协作研究:跟踪数据流和动力系统中的低维信息
- 批准号:
1409422 - 财政年份:2014
- 资助金额:
$ 47.48万 - 项目类别:
Continuing Grant
CIF: Medium: Analog Architectures for Optimization in Signal Processing
CIF:中:用于优化信号处理的模拟架构
- 批准号:
0905346 - 财政年份:2009
- 资助金额:
$ 47.48万 - 项目类别:
Standard Grant
Collaborative research: Leveraging low-dimensional structure for time series analysis and prediction
合作研究:利用低维结构进行时间序列分析和预测
- 批准号:
0830456 - 财政年份:2008
- 资助金额:
$ 47.48万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 47.48万 - 项目类别:
Continuing Grant
Digital photonics exploiting optical nonlinearities of low-dimensional nano-materials
利用低维纳米材料光学非线性的数字光子学
- 批准号:
23H00174 - 财政年份:2023
- 资助金额:
$ 47.48万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
- 批准号:
2155096 - 财政年份:2022
- 资助金额:
$ 47.48万 - 项目类别:
Standard Grant
CAS: Exploiting Spin in Photo-induced Chemistry: Fundamental Explorations of High-spin and Low-spin Transition Metals in Long-lived Charge Separated States and Oxidative Catalysis
CAS:利用光诱导化学中的自旋:长寿命电荷分离态和氧化催化中高自旋和低自旋过渡金属的基础探索
- 批准号:
2153862 - 财政年份:2022
- 资助金额:
$ 47.48万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
- 批准号:
2155097 - 财政年份:2022
- 资助金额:
$ 47.48万 - 项目类别:
Standard Grant
CAREER: Exploiting Low-Dimensional Structures in Data Science: Manifold Learning, Partial Differential Equation Identification, and Neural Networks
职业:在数据科学中利用低维结构:流形学习、偏微分方程识别和神经网络
- 批准号:
2145167 - 财政年份:2022
- 资助金额:
$ 47.48万 - 项目类别:
Continuing Grant
Low power explosive detection exploiting the time domain
利用时域的低功率爆炸物检测
- 批准号:
NS220100020 - 财政年份:2022
- 资助金额:
$ 47.48万 - 项目类别:
National Intelligence and Security Discovery Research Grants
Exploiting cross-reactive, conserved epitopes in Plasmodium vivax to develop a vaccine against falciparum placental malaria.
利用间日疟原虫中的交叉反应性保守表位开发针对恶性胎盘疟疾的疫苗。
- 批准号:
10362723 - 财政年份:2020
- 资助金额:
$ 47.48万 - 项目类别:
Exploiting cross-reactive, conserved epitopes in Plasmodium vivax to develop a vaccine against falciparum placental malaria.
利用间日疟原虫中的交叉反应性保守表位开发针对恶性胎盘疟疾的疫苗。
- 批准号:
10583568 - 财政年份:2020
- 资助金额:
$ 47.48万 - 项目类别:
Creation of novel solid-state ionics exploiting low-temperature sublattice melting accompanied by pseudorotation of hydride complexes
利用伴随氢化物赝旋转的低温亚晶格熔化创建新型固态离子
- 批准号:
20K20438 - 财政年份:2019
- 资助金额:
$ 47.48万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)