Inference using Shape-Restricted Regression Splines
使用形状限制回归样条进行推理
基本信息
- 批准号:0905656
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The PI develops methods in function estimation and inference, using shape-restricted regression splines. The work includes three broad areas in estimation and inference. First, generalized multiple regression models is investigated, where the mean response function is assumed to be smooth and have a shape restriction such as monotone or convex. Second, a new maximum-likelihood method for smoothed unimodal density estimation is developed, that allows for heavy tails such as in the Pareto family of densities. An application is a new robust regression method that estimates the error density estimation non-parametrically, simultaneously with the regression function. Finally, the proportional hazards model is developed, where the hazard function is assumed to be smooth and have a shape restriction such as monotonicity or convexity. Many problems in data analysis involve estimation of a function. Standard methods require the specification of the function up to a few parameters, but the a priori knowledge about the function is often vague and qualitative. For example, the researcher might know that a growth curve is smooth, increasing, and concave. The expected number of nesting sites at a lake might be a decreasing function of some pollution measure. Perhaps a hazard rate function is known to be increasing and convex, as in modeling wear-out of a mechanical part, or bath-tub shaped, as in modeling organ transplant failures. Nonparametric methods in function estimation are appealing because they require minimal assumptions, but development of practical inference methods is more difficult. Many methods that assume only smoothness of the function are sensitive to user-defined choices of the smoothing parameters such as bandwidth, number of knots, or penalty parameter, and the user can not rely on inference results that change with these choices. However, when the researcher can also assume a shape such as increasing or convex, the fits to the data become more robust, for the simple reason that the ``wiggling'' associated with over-fitting is obviated. The PI develops inference methods in three important areas: first, generalized regression models, such as when the response is a count or binary. Second, a new method for robust regression is developed, where the error density is assumed to be unimodal and symmetric, to allow for either heavy-tailed or thin-tailed errors. Finally, the proportional hazards model is developed, under shape and smoothness assumptions for the hazard function. These models are often used in medical studies to compare treatments while accounting for possible mitigating factors, and in industry to model mechanical systems. All three of these research projects result in basic data-analysis tools that can be used in virtually any area of science.
该奖项是根据2009年《美国复苏和再投资法案》(公法111-5)提供资金的。PI发展了函数估计和推理的方法,使用形状受限的回归样条法。这项工作包括估计和推断方面的三个广泛领域。首先,研究了广义多元回归模型,其中均值响应函数是光滑的,且具有单调或凸等形状约束。其次,提出了一种新的平滑单峰密度估计的极大似然方法,该方法考虑了Pareto密度族中的重尾。一个应用是一种新的稳健回归方法,它与回归函数同时非参数地估计误差密度估计。最后,建立了比例风险模型,假设风险函数是光滑的,且具有单调性或凸性等形状约束。数据分析中的许多问题都涉及函数的估计。标准方法需要指定函数,最多只需要几个参数,但关于函数的先验知识往往是模糊的和定性的。例如,研究人员可能知道增长曲线是平滑的、递增的和凹陷的。一个湖上的筑巢地点的预期数量可能是某种污染措施的递减函数。也许已知的危险率函数是递增的和凸的,就像在模拟机械部件的磨损或浴缸形状时,就像在模拟器官移植失败时一样。函数估计中的非参数方法很有吸引力,因为它们需要最小的假设,但开发实用的推理方法更加困难。许多只假设函数光滑性的方法对用户定义的平滑参数的选择很敏感,例如带宽、节点数或惩罚参数,并且用户不能依赖随着这些选择而改变的推断结果。然而,当研究人员也可以采取诸如增加或凸起的形状时,对数据的拟合变得更加稳健,原因很简单,因为避免了与过度拟合相关的“摆动”。PI在三个重要领域发展了推理方法:第一,广义回归模型,例如当响应是计数或二进制时。其次,提出了一种稳健回归的新方法,该方法假定误差密度是单峰对称的,可以同时考虑重尾误差和细尾误差。最后,在风险函数的形状和光滑性假设下,建立了比例风险模型。这些模型经常用于医学研究,以比较治疗方法,同时考虑可能的缓解因素,并在工业中用于模拟机械系统。所有这三个研究项目都产生了基本的数据分析工具,几乎可以在任何科学领域使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mary Meyer其他文献
Simulation as a Learning Experience: Perceptions of New RNs
- DOI:
10.1016/j.ecns.2014.03.002 - 发表时间:
2014-08-01 - 期刊:
- 影响因子:
- 作者:
Mary Meyer;Karen Marzen-Groller;Sarah Myers;Cara Busenhart;Shirley Waugh;Kristin Stegenga - 通讯作者:
Kristin Stegenga
Estimating a Polya Frequency Function
估计 Polya 频率函数
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
J. K. Pal;Michael Woodroofe;Mary Meyer - 通讯作者:
Mary Meyer
GENDER DIFFERENCES IN RISK OF STROKE IN PATIENTS WITH RESTLESS LEGS SYNDROME
- DOI:
10.1016/s0735-1097(16)32025-3 - 发表时间:
2016-04-05 - 期刊:
- 影响因子:
- 作者:
Zoe Heis;Beneet Pandey;Susan Olet;Samian Sulaiman;Saagar Pamulapati;Mary Meyer;Lynda Daley Barsch;Michael N. Katzoff;A. Jamil Tajik;Arshad Jahangir - 通讯作者:
Arshad Jahangir
Mary Meyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mary Meyer', 18)}}的其他基金
Shape-Constrained Estimation and Inference for Surveys
调查的形状约束估计和推断
- 批准号:
1533804 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Funding for Graybill 2011 Conference
为 Graybill 2011 年会议提供资金
- 批准号:
1115654 - 财政年份:2011
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Acquisition of Linux Cluster to Meet Modern Computational Needs for Statistical Research at University of Georgia
乔治亚大学收购 Linux 集群以满足统计研究的现代计算需求
- 批准号:
0619654 - 财政年份:2006
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
Place of articulation and assimilation of Japanese moraic nasal by learners of Japanese: Observations on tongue shape using ultrasound.
日语学习者对日语莫拉鼻音的发音和同化位置:利用超声波观察舌形。
- 批准号:
23K12212 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
BRITE Relaunch: Using Cell Shape and Cytoskeletal Organization for Understanding and Predicting Cellular Force Generation
BRITE 重新推出:利用细胞形状和细胞骨架组织来理解和预测细胞力的产生
- 批准号:
2227605 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Development of variable friction mechanism using shape memory polymer and its application to peristaltic robots
形状记忆聚合物可变摩擦机构的研制及其在蠕动机器人中的应用
- 批准号:
23K03761 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Reconfigurable Intelligent Electromagnetic Surface Using Magnetic Shape Memory Polymers
合作研究:使用磁性形状记忆聚合物的可重构智能电磁表面
- 批准号:
2300156 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
HCC: Small: 3DStylus: User-Guided Shape Manipulation using Neural Priors
HCC:小型:3DStylus:使用神经先验进行用户引导的形状操作
- 批准号:
2304481 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Adapting to the Human Body: Shape-Adaptive Attachment for Parallel Wearable Robots Using Jamming
适应人体:使用干扰的并行可穿戴机器人的形状自适应附件
- 批准号:
2240508 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
The Impacts of Phase Separation and Particle Shape on Aerosol Optical Properties Measured using Single Particle Cavity Ring-Down Spectroscopy
相分离和颗粒形状对使用单颗粒腔衰荡光谱测量的气溶胶光学性质的影响
- 批准号:
2886474 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Studentship
Collaborative Research: AF: Small: Shape Matching in a Messy World Using Frechet Distance
合作研究:AF:小:使用 Frechet 距离在混乱的世界中进行形状匹配
- 批准号:
2311179 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Using secondary data analyses to establish whether face-shape characteristics predict social judgments of faces consistently across world regions
使用二次数据分析来确定面部形状特征是否能够一致地预测世界各地区对面部的社会判断
- 批准号:
ES/X000249/1 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Research Grant
Collaborative Research: Reconfigurable Intelligent Electromagnetic Surface Using Magnetic Shape Memory Polymers
合作研究:使用磁性形状记忆聚合物的可重构智能电磁表面
- 批准号:
2300157 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant