Shape-Restricted Inference

形状限制推理

基本信息

  • 批准号:
    0204572
  • 负责人:
  • 金额:
    $ 6.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-08-01 至 2004-07-31
  • 项目状态:
    已结题

项目摘要

AbstractDMS-0204572PI: Mary MeyerTitle: Shape-Restricted InferenceConsider the problem of estimating a function given observations with some random component. The function may be a regression function, a density, or a probability density function such as in bioassay models. Shape-restricted methods allow the practitioner to impose only qualitative restrictions on the class of functions, such as increasing, concave, or sigmoidal. Estimates may be obtained using maximum-likelihood ideas; there are many problems in inference to be solved. Goals for this proposal include developing confidence bounds for regression functions using shape restrictions, developing tests for an ANCOVA type of model with a shape-restricted covariate, time-series analysis with shape-restricted trend function, smooth shape-restricted function estimation, and developing a robust regression estimator using a shape-restricted error density.Traditional statistical methods for regression, density estimation and bioassay problems include: 1) estimating a function, 2) estimating the quality of fit, perhaps using confidence bounds, and 3) testing hypotheses about the function. The investigator wishes to develop these methods nonparametrically, that is, without imposing a parametric form for the function. Shape-restricted methods in statistics approach these estimation and inference problems with a minimum of assumptions about the functional form. For example, a growth curve may be assumed to be increasing and concave, or a probability curve might be sigmoidal- a more general assumption than the usual logistic model. A density function might be assumed to be symmetric and unimodal, in a situation where stronger assumptions like normality might not be justified. A fit to a function using fewer assumptions will have more fidelity to the data. Perhaps more importantly, these shape-restricted fits may be used to test the validity of the parametric models, or to select from several candidate parametric models.
AbstractDMS-0204572PI: Mary MeyerTitle: Shape-Restricted InferenceConsider the problem of estimating a function given observations with some random component. The function may be a regression function, a density, or a probability density function such as in bioassay models. Shape-restricted methods allow the practitioner to impose only qualitative restrictions on the class of functions, such as increasing, concave, or sigmoidal. Estimates may be obtained using maximum-likelihood ideas; there are many problems in inference to be solved. Goals for this proposal include developing confidence bounds for regression functions using shape restrictions, developing tests for an ANCOVA type of model with a shape-restricted covariate, time-series analysis with shape-restricted trend function, smooth shape-restricted function estimation, and developing a robust regression estimator using a shape-restricted error density.Traditional statistical methods for regression, density estimation and bioassay problems include: 1) estimating a function, 2) estimating the quality of fit, perhaps using confidence bounds, and 3) testing hypotheses about the function. The investigator wishes to develop these methods nonparametrically, that is, without imposing a parametric form for the function. Shape-restricted methods in statistics approach these estimation and inference problems with a minimum of assumptions about the functional form. For example, a growth curve may be assumed to be increasing and concave, or a probability curve might be sigmoidal- a more general assumption than the usual logistic model. A density function might be assumed to be symmetric and unimodal, in a situation where stronger assumptions like normality might not be justified. A fit to a function using fewer assumptions will have more fidelity to the data. Perhaps more importantly, these shape-restricted fits may be used to test the validity of the parametric models, or to select from several candidate parametric models.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mary Meyer其他文献

Simulation as a Learning Experience: Perceptions of New RNs
  • DOI:
    10.1016/j.ecns.2014.03.002
  • 发表时间:
    2014-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mary Meyer;Karen Marzen-Groller;Sarah Myers;Cara Busenhart;Shirley Waugh;Kristin Stegenga
  • 通讯作者:
    Kristin Stegenga
Estimating a Polya Frequency Function
估计 Polya 频率函数
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. K. Pal;Michael Woodroofe;Mary Meyer
  • 通讯作者:
    Mary Meyer
GENDER DIFFERENCES IN RISK OF STROKE IN PATIENTS WITH RESTLESS LEGS SYNDROME
  • DOI:
    10.1016/s0735-1097(16)32025-3
  • 发表时间:
    2016-04-05
  • 期刊:
  • 影响因子:
  • 作者:
    Zoe Heis;Beneet Pandey;Susan Olet;Samian Sulaiman;Saagar Pamulapati;Mary Meyer;Lynda Daley Barsch;Michael N. Katzoff;A. Jamil Tajik;Arshad Jahangir
  • 通讯作者:
    Arshad Jahangir

Mary Meyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mary Meyer', 18)}}的其他基金

Shape-Constrained Estimation and Inference for Surveys
调查的形状约束估计和推断
  • 批准号:
    1533804
  • 财政年份:
    2015
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
Funding for Graybill 2011 Conference
为 Graybill 2011 年会议提供资金
  • 批准号:
    1115654
  • 财政年份:
    2011
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
Inference using Shape-Restricted Regression Splines
使用形状限制回归样条进行推理
  • 批准号:
    0905656
  • 财政年份:
    2009
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
Acquisition of Linux Cluster to Meet Modern Computational Needs for Statistical Research at University of Georgia
乔治亚大学收购 Linux 集群以满足统计研究的现代计算需求
  • 批准号:
    0619654
  • 财政年份:
    2006
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant

相似海外基金

Order restricted statistical inference and its applications
阶数限制统计推断及其应用
  • 批准号:
    261301-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Discovery Grants Program - Individual
Order restricted statistical inference and its applications
阶数限制统计推断及其应用
  • 批准号:
    261301-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Discovery Grants Program - Individual
Order restricted statistical inference and its applications
阶数限制统计推断及其应用
  • 批准号:
    261301-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Discovery Grants Program - Individual
Order restricted statistical inference and its applications
阶数限制统计推断及其应用
  • 批准号:
    261301-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Discovery Grants Program - Individual
Inference using Shape-Restricted Regression Splines
使用形状限制回归样条进行推理
  • 批准号:
    0905656
  • 财政年份:
    2009
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
Order restricted statistical inference and its applications
阶数限制统计推断及其应用
  • 批准号:
    261301-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Discovery Grants Program - Individual
Inference for Restricted Parameters
受限参数的推断
  • 批准号:
    0405584
  • 财政年份:
    2004
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Continuing Grant
Methods for Reliability Theory and Applications of Order-Restricted Inference
可靠性理论方法和阶数限制推理的应用
  • 批准号:
    0072207
  • 财政年份:
    2000
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Continuing Grant
Order restricted statistical inference and stochastic ordering
顺序限制统计推断和随机排序
  • 批准号:
    4541-1997
  • 财政年份:
    2000
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Discovery Grants Program - Individual
Order restricted statistical inference and stochastic ordering
顺序限制统计推断和随机排序
  • 批准号:
    4541-1997
  • 财政年份:
    1999
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了