Topics in Measurable Group Theory

可测群论主题

基本信息

  • 批准号:
    0905977
  • 负责人:
  • 金额:
    $ 46.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-15 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-0905977Principal Investigator: Alexander FurmanThe proposed project contains three research directions involvinginfinite groups and dynamics of group actions. These threedirections include: (1) A uniform approach to a number of higherrank superrigidity phenomena. This approach, based on the notionof a generalized Weyl groups, should cover many known results,including the original Margulis' superrigidity, and its cocycleversion due to Zimmer, results for abstract products, new resultsfor groups acting on exotic affine buildings. (2)Measure-theoretic notion of imbedding between countable groups.The project is to study the resulting equivalence classes ofMeasurably Bi-Imbeddable groups, and the order between theseclasses. The techniques include cocycle superrigidity resultsobtained in part (1). (3) "Moduli space" of invariant metrics ona Gromov-hyperbolic group taken up to bounded distortion. Theguiding and motivating source for such metrics are metrics liftedfrom Riemannian metrics of negative curvature on a fixed closedmanifold.The project belongs to an area of research where Algebra,Geometry and Dynamics interact. The common theme of the projectis the study of intrinsic symmetries of certain structures whichappear in Dynamics, Algebra and Geometry, and the impact thatsuch intrinsic symmetries have on the studied objects. Theproposed problems suggest new points of view and possiblegeneralizations to some important recent results in these areas.
AbstractAward:DMS-0905977首席研究员:亚历山大弗曼拟议的项目包含三个研究方向涉及无限群体和群体行动的动力学。 这三个方向包括:(1)对一些高阶超刚性现象的统一处理。这种方法基于广义Weyl群的概念,应该涵盖许多已知的结果,包括原来的Margulis' superrigidity,和它的余循环版本由于Zimmer,结果抽象产品,新的resultsfor集团作用于异国情调的仿射buildings。 (2)可数群间嵌入的测度论概念,研究了可测双嵌入群的等价类,以及这些等价类之间的阶。这些技巧包括第(1)部分中得到的上循环超刚性结果。 (3)Gromov-双曲群上的不变度量的模空间。 这些度量的指导和激励来源是从固定闭流形上的负曲率黎曼度量中提升出来的度量。该项目属于代数、几何和动力学相互作用的研究领域。 该项目的共同主题是研究出现在动力学,代数和几何中的某些结构的内在对称性,以及这种内在对称性对研究对象的影响。 提出的问题提出了新的观点和可能的推广,在这些领域的一些重要的最近的结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Furman其他文献

Alexander Furman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Furman', 18)}}的其他基金

Measured Group Theory and Dynamics
测量群论和动力学
  • 批准号:
    2005493
  • 财政年份:
    2020
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Continuing Grant
Rigidity, Measured Group Theory, and Dynamics
刚性、测量群论和动力学
  • 批准号:
    1611765
  • 财政年份:
    2016
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Continuing Grant
Dynamics and geometry of large groups
大群体的动力学和几何
  • 批准号:
    1207803
  • 财政年份:
    2012
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Continuing Grant
Rigidity of group actions in Ergodic Theory, and related topics
遍历理论中群体行为的刚性及相关主题
  • 批准号:
    0604611
  • 财政年份:
    2006
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Standard Grant
CAREER: Rigidity of Group Actions in Ergodic Theory and Geometry
职业:遍历理论和几何中群作用的刚性
  • 批准号:
    0094245
  • 财政年份:
    2001
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Continuing Grant
Rigidity Aspects of Ergodic Actions of Lattices in Semisimple Lie Groups
半单李群中格子遍历作用的刚性方面
  • 批准号:
    0049069
  • 财政年份:
    2000
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Standard Grant
Rigidity Aspects of Ergodic Actions of Lattices in Semisimple Lie Groups
半单李群中格子遍历作用的刚性方面
  • 批准号:
    9996433
  • 财政年份:
    1999
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Standard Grant
Rigidity Aspects of Ergodic Actions of Lattices in Semisimple Lie Groups
半单李群中格子遍历作用的刚性方面
  • 批准号:
    9803607
  • 财政年份:
    1998
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Standard Grant

相似海外基金

Structural Properties of Measurable and Topological Dynamical Systems
可测量和拓扑动力系统的结构性质
  • 批准号:
    2348315
  • 财政年份:
    2024
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Standard Grant
Preclinical Validation of Personalized Molecular Assays for Measurable Residual Disease Monitoring in Pediatric AML
用于儿科 AML 可测量残留疾病监测的个性化分子检测的临床前验证
  • 批准号:
    10643568
  • 财政年份:
    2023
  • 资助金额:
    $ 46.02万
  • 项目类别:
Aiming at the development of a simple clothing pressure measuring device and the development of a measuring method for the concave surface and the minimum measurable curvature as ear straps
针对简易服装压力测量装置的研制以及耳带凹面和最小可测曲率的测量方法的研制
  • 批准号:
    22K02111
  • 财政年份:
    2022
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DIADEM: debugging made dependable and measurable
DIADEM:调试变得可靠且可衡量
  • 批准号:
    EP/W012308/1
  • 财政年份:
    2022
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Research Grant
Combinatorial set theory and measurable combinatorics
组合集合论和可测组合学
  • 批准号:
    RGPIN-2021-03549
  • 财政年份:
    2022
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Discovery Grants Program - Individual
Measurable group theory, descriptive set theory and model theory of homogeneous structures
可测群论、描述集合论和齐次结构模型论
  • 批准号:
    RGPAS-2020-00097
  • 财政年份:
    2022
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
SMART -Specific Measurable Monitored Actuated Recorded Telemetric- Agro-Theranostic Systems for Agriculture
SMART - 农业专用可测量监控驱动记录遥测农业治疗诊断系统
  • 批准号:
    10020720
  • 财政年份:
    2022
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Collaborative R&D
Measurable dynamics: theory and applications
可测量的动力学:理论与应用
  • 批准号:
    RGPIN-2019-06421
  • 财政年份:
    2022
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Discovery Grants Program - Individual
Measurable group theory, descriptive set theory and model theory of homogeneous structures
可测群论、描述集合论和齐次结构模型论
  • 批准号:
    RGPIN-2020-05445
  • 财政年份:
    2022
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a new minimally invasive and continuously measurable biomarker in colorectal cancer
开发一种新的微创且可连续测量的结直肠癌生物标志物
  • 批准号:
    21K20809
  • 财政年份:
    2021
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了