Rigidity, Measured Group Theory, and Dynamics

刚性、测量群论和动力学

基本信息

  • 批准号:
    1611765
  • 负责人:
  • 金额:
    $ 27.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS 1611765, Principal Investigator: Alexander FurmanStudy of symmetry is one of the central themes in mathematics: one investigates mathematical laws and various associated objects by analysing their symmetries (i.e., transformations that do not change them) and further analyses how the laws and objects change under various transformations. In modern language one studies groups of symmetries and groups of transformations. The overarching theme of the project is to study phenomena in dynamics and geometry that occur in the presence of large groups (i.e., situations with a lot of explicit or implicit symmetries). This research continues important work over the last few decades that connects topics in geometry, probability theory, dynamical systems, and number theory.More specifically, the proposal focuses on three areas: (1) measured group theory - an ergodic-theoretic analogue of geometric group theory; (2) further study of higher-rank super-rigidity phenomena; and (3) study of Lyapunov exponents in the classical context of the multiplicative ergodic theorem in the presence of large groups. The first topic includes study of rigidity for rank-one lattices in analogy with previously established rigidity results for higher-rank lattices. Another promising direction is development of a measured analogue of Gromov-hyperbolic groups. The second theme includes study of rigidity phenomena for groups that resemble but are different from higher-rank lattices, but admit rich Weyl groups. The third topic develops a method of establishing simplicity of the Lyapunov spectrum using certain group actions - this investigation connects now classical results on random products of matrices, geodesic flows on negatively curved manifolds, and recent developments in Teichmuller dynamics.
摘要奖:DMS 1611765,首席研究员:Alexander Furman对称性研究是数学的中心主题之一:通过分析数学定律和各种相关对象的对称性(即不改变它们的变换)来研究它们,并进一步分析定律和对象在各种变换下如何变化。在现代语言中,人们研究对称群和变换群。该项目的首要主题是研究存在大群体(即具有大量显式或隐式对称性的情况)时发生的动力学和几何现象。这项研究继续了过去几十年来连接几何、概率论、动力系统和数论等主题的重要工作。更具体地说,该提案重点关注三个领域:(1)测得群论——几何群论的遍历理论类似物; (2)进一步研究高阶超刚性现象; (3) 在存在大群的乘法遍历定理的经典背景下研究李亚普诺夫指数。第一个主题包括研究一阶晶格的刚性,与先前建立的高阶晶格的刚性结果类似。另一个有希望的方向是开发格罗莫夫双曲群的可测量类似物。第二个主题包括研究与高阶格相似但不同但承认富外尔群的群的刚性现象。第三个主题开发了一种使用某些群作用来建立李雅普诺夫谱的简单性的方法 - 这项研究现在将矩阵随机乘积的经典结果、负弯曲流形上的测地流以及 Teichmuller 动力学的最新发展联系起来。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Furman其他文献

Alexander Furman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Furman', 18)}}的其他基金

Measured Group Theory and Dynamics
测量群论和动力学
  • 批准号:
    2005493
  • 财政年份:
    2020
  • 资助金额:
    $ 27.1万
  • 项目类别:
    Continuing Grant
Dynamics and geometry of large groups
大群体的动力学和几何
  • 批准号:
    1207803
  • 财政年份:
    2012
  • 资助金额:
    $ 27.1万
  • 项目类别:
    Continuing Grant
Topics in Measurable Group Theory
可测群论主题
  • 批准号:
    0905977
  • 财政年份:
    2009
  • 资助金额:
    $ 27.1万
  • 项目类别:
    Standard Grant
Rigidity of group actions in Ergodic Theory, and related topics
遍历理论中群体行为的刚性及相关主题
  • 批准号:
    0604611
  • 财政年份:
    2006
  • 资助金额:
    $ 27.1万
  • 项目类别:
    Standard Grant
CAREER: Rigidity of Group Actions in Ergodic Theory and Geometry
职业:遍历理论和几何中群作用的刚性
  • 批准号:
    0094245
  • 财政年份:
    2001
  • 资助金额:
    $ 27.1万
  • 项目类别:
    Continuing Grant
Rigidity Aspects of Ergodic Actions of Lattices in Semisimple Lie Groups
半单李群中格子遍历作用的刚性方面
  • 批准号:
    0049069
  • 财政年份:
    2000
  • 资助金额:
    $ 27.1万
  • 项目类别:
    Standard Grant
Rigidity Aspects of Ergodic Actions of Lattices in Semisimple Lie Groups
半单李群中格子遍历作用的刚性方面
  • 批准号:
    9996433
  • 财政年份:
    1999
  • 资助金额:
    $ 27.1万
  • 项目类别:
    Standard Grant
Rigidity Aspects of Ergodic Actions of Lattices in Semisimple Lie Groups
半单李群中格子遍历作用的刚性方面
  • 批准号:
    9803607
  • 财政年份:
    1998
  • 资助金额:
    $ 27.1万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
  • 批准号:
    2327422
  • 财政年份:
    2024
  • 资助金额:
    $ 27.1万
  • 项目类别:
    Standard Grant
Examining Links between General Fatigue in Myasthenia Gravis with Objectively Measured Sleep
检查重症肌无力的全身疲劳与客观测量的睡眠之间的联系
  • 批准号:
    480775
  • 财政年份:
    2023
  • 资助金额:
    $ 27.1万
  • 项目类别:
The Moderating and Mediating Effects of Perceived and Objectively Measured Neighbourhood Walkability on Physical Activity in Canadian Adults
感知和客观测量的社区步行适宜性对加拿大成年人身体活动的调节和中介作用
  • 批准号:
    500529
  • 财政年份:
    2023
  • 资助金额:
    $ 27.1万
  • 项目类别:
    Operating Grants
Advancement in prediction of hydrodynamic characteristics under the free-surface and discharge evaluation by using the turbulence information measured by live camera images
利用实时相机图像测量的湍流信息预测自由表面下的水动力特性和流量评估的进展
  • 批准号:
    23K04043
  • 财政年份:
    2023
  • 资助金额:
    $ 27.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Randomized Clinical Trial of Continuous vs. Intermittent Infusion Vancomycin: Effects on Measured GFR and Kidney Injury Biomarkers
连续与间歇输注万古霉素的随机临床试验:对测量的 GFR 和肾损伤生物标志物的影响
  • 批准号:
    10647236
  • 财政年份:
    2023
  • 资助金额:
    $ 27.1万
  • 项目类别:
Examining the influence of objectively measured physical activity on bone health throughout pregnancy and the postpartum period
检查客观测量的身体活动对整个怀孕期间和产后期骨骼健康的影响
  • 批准号:
    495550
  • 财政年份:
    2023
  • 资助金额:
    $ 27.1万
  • 项目类别:
    Miscellaneous Programs
Contribution of ipRGC to the color perception measured by the opponent color responses
ipRGC 对通过对手颜色响应测量的颜色感知的贡献
  • 批准号:
    23K11281
  • 财政年份:
    2023
  • 资助金额:
    $ 27.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Implementation Strategies for Self-Measured Blood Pressure Monitoring in Racially and Ethnically Diverse Populations (InS2PiRED).
种族和民族多元化人群自测血压监测的实施策略 (InS2PiRED)。
  • 批准号:
    10831792
  • 财政年份:
    2023
  • 资助金额:
    $ 27.1万
  • 项目类别:
Establishing best practices for the use of accelerometer measured ambient light sensor data to assess children's outdoor time
建立使用加速度计测量的环境光传感器数据来评估儿童的户外时间的最佳实践
  • 批准号:
    10731315
  • 财政年份:
    2023
  • 资助金额:
    $ 27.1万
  • 项目类别:
NSFGEO-NERC: Impacts of sea ice melt and anthropogenic emmisions on biogenic sulfur aerosol as measured in a central Greenland ice core
NSFGEO-NERC:在格陵兰中部冰芯中测量的海冰融化和人为排放对生物硫气溶胶的影响
  • 批准号:
    NE/Y001710/1
  • 财政年份:
    2023
  • 资助金额:
    $ 27.1万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了