Computations in Classical Chromatic Homotopy Theory, Algebraic K-Theory, and Motivic Homotopy
经典色同伦理论、代数 K 理论和基元同伦的计算
基本信息
- 批准号:0906285
- 负责人:
- 金额:$ 10.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-15 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).This project seeks to computationally approach the Hopkins-Miller higher real K-theory spectra, the algebraic K-theory of structured ring spectra, and motivic homotopy. In all three cases, the computations themselves are strongly related: there is a subtle interplay between the algebraic action of a finite group (be they automorphisms of a fixed formal group, the circle action on topological Hochschild homology, or the action of a Galois group) and the geometry of Thom spectra over the classifying spaces. In particular, our goals are threefold: (1) find a procedure to systematically determine the homotopy ring of the Hopkins-Miller higher real K-theory spectra EO_n(G) (this is joint with Hopkins and Ravenel), (2) better standing the Bokstedt-Hsiang-Madsen TR and TC machinery and the algebraic K-theory of basic chromatic spectra, and (3) use the standard techniques of algebraic topology to provide foundational computations in motivic homotopy.The goal of algebraic topology is to systematically build a connection between algebraic objects like numbers and topological objects like spaces. These connections are self-reinforcing: problems in algebra become problems in topology which are further refined into algebra, and much of modern algebraic topology relies heavily on the ways spaces themselves can be described more algebraically. This project exploits this connection in multiple ways. First, in trying to understand how to build spaces out of spheres, one encounters the problem of computing a large family of invariants: the homotopy groups of spheres. This has been a very active part of algebraic topology since the 1930s, and the first part of the project is to compute other, related rings which act as increasingly good approximations. Second, the recent developments allow a two-way interchange between classical questions about rings and structured spectra. In particular, this project seeks to better understand the algebraic objects using more geometrical constructions.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。该项目旨在计算方法的霍普金斯-米勒更高的真实的K-理论光谱,代数K-理论的结构环光谱,和motivic同伦。在所有这三种情况下,计算本身都是密切相关的:有限群的代数作用(无论它们是固定形式群的自同构,拓扑Hochschild同调的循环作用,还是伽罗瓦群的作用)与分类空间上的Thom谱的几何之间存在微妙的相互作用。具体而言,我们的目标有三个:(1)系统地确定Hopkins-Miller高真实的K理论谱EO_n(G)的同伦环(2)较好地代表了Bokstedt-Hsiang-Madsen的TR和TC机制和基本色谱的代数K理论,(3)使用代数拓扑的标准技术来提供运动同伦的基础计算。代数拓扑的目标是系统地建立代数对象(如数)和拓扑对象(如空间)之间的联系。这些联系是自我加强的:代数中的问题变成了拓扑中的问题,这些问题又被进一步细化到代数中,而现代代数拓扑在很大程度上依赖于空间本身可以更代数地描述的方式。这个项目以多种方式利用了这种联系。首先,在试图理解如何从球面构建空间时,人们遇到了计算一大类不变量的问题:球面的同伦群。自20世纪30年代以来,这一直是代数拓扑学中非常活跃的一部分,该项目的第一部分是计算其他相关的环,这些环作为越来越好的近似。其次,最近的发展允许一个双向交换的经典问题之间的环和结构谱。特别是,这个项目旨在更好地理解代数对象使用更多的几何结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Hill其他文献
Computational fluid dynamics based digital twins of fixed bed bioreactors validate scaling principles for recombinant adeno-associated virus gene therapy manufacturing.
基于计算流体动力学的固定床生物反应器数字孪生验证了重组腺相关病毒基因治疗制造的缩放原理。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.8
- 作者:
Michael Hill;Colten White;Shaoying Wang;John A Thomas;Brian DeVincentis;Nripen Singh - 通讯作者:
Nripen Singh
Discretion and Welfare Rights in a British Context
英国背景下的自由裁量权和福利权
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Michael Hill - 通讯作者:
Michael Hill
Taiwan: what kind of social policy regime?
台湾:什么样的社会政策制度?
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Michael Hill;Y. Hwang - 通讯作者:
Y. Hwang
Assessing needs for interdisciplinarity in agriculture, nutrition, and health education
评估农业、营养和健康教育跨学科的需求
- DOI:
10.1016/j.gfs.2023.100691 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Reshma P. Roshania;J. Yates;Lauren J. McIntyre;T. Chancellor;E. Fivian;Michael Hill;R. Isoto;P. Marinda;S. Narayanan;Louise Whatford;F. Zotor;S. Khandelwal - 通讯作者:
S. Khandelwal
A common emNFKB1/em variant detected through antibody analysis in UK Biobank predicts risk of infection and allergy
通过英国生物银行中的抗体分析检测到的一种常见的 emNFKB1/em 变体预测了感染和过敏的风险
- DOI:
10.1016/j.ajhg.2023.12.013 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:8.100
- 作者:
Amanda Y. Chong;Nicole Brenner;Andres Jimenez-Kaufmann;Adrian Cortes;Michael Hill;Thomas J. Littlejohns;James J. Gilchrist;Benjamin P. Fairfax;Julian C. Knight;Flavia Hodel;Jacques Fellay;Gil McVean;Andres Moreno-Estrada;Tim Waterboer;Adrian V.S. Hill;Alexander J. Mentzer - 通讯作者:
Alexander J. Mentzer
Michael Hill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Hill', 18)}}的其他基金
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 10.09万 - 项目类别:
Standard Grant
Molecular s-block Assemblies for Redox-active Bond Activation and Catalysis: Repurposing the s-block as 3d-elements
用于氧化还原活性键活化和催化的分子 s 块组装:将 s 块重新用作 3d 元素
- 批准号:
EP/X01181X/1 - 财政年份:2023
- 资助金额:
$ 10.09万 - 项目类别:
Research Grant
Equivariant Approaches to Chromatic Homotopy
色同伦的等变方法
- 批准号:
2105019 - 财政年份:2021
- 资助金额:
$ 10.09万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Trace Methods and Applications for Cut-and-Paste K-Theory
FRG:协作研究:剪切粘贴 K 理论的追踪方法和应用
- 批准号:
2052702 - 财政年份:2021
- 资助金额:
$ 10.09万 - 项目类别:
Standard Grant
Computations in Stable and Unstable Equivariant Chromatic Homotopy
稳定和不稳定等变色同伦的计算
- 批准号:
1811189 - 财政年份:2018
- 资助金额:
$ 10.09万 - 项目类别:
Continuing Grant
Nucleophilic Alkaline Earth Boryls: From Conception and Theory to Application
亲核碱土硼基化合物:从概念、理论到应用
- 批准号:
EP/R020752/1 - 财政年份:2018
- 资助金额:
$ 10.09万 - 项目类别:
Research Grant
Augmentation of Alkaline Earth Reactivity: An FLP Analogy
碱土反应性的增强:FLP 类比
- 批准号:
EP/N014456/1 - 财政年份:2016
- 资助金额:
$ 10.09万 - 项目类别:
Research Grant
Equivariant Derived Algebraic Geometry
等变导出的代数几何
- 批准号:
1509652 - 财政年份:2015
- 资助金额:
$ 10.09万 - 项目类别:
Continuing Grant
Computations in Equivariant Homotopy and Algebraic K-Theory
等变同伦和代数 K 理论中的计算
- 批准号:
1207774 - 财政年份:2012
- 资助金额:
$ 10.09万 - 项目类别:
Standard Grant
Scalable, low-cost organic photovoltaic devices
可扩展、低成本的有机光伏器件
- 批准号:
EP/J50001X/1 - 财政年份:2011
- 资助金额:
$ 10.09万 - 项目类别:
Research Grant
相似海外基金
Foundations of Classical and Quantum Verifiable Computing
经典和量子可验证计算的基础
- 批准号:
MR/X023583/1 - 财政年份:2024
- 资助金额:
$ 10.09万 - 项目类别:
Fellowship
Mixed Quantum-Classical Semiclassical Theory: Finding Reaction Paths in Open Quantum Systems
混合量子经典半经典理论:寻找开放量子系统中的反应路径
- 批准号:
2404809 - 财政年份:2024
- 资助金额:
$ 10.09万 - 项目类别:
Standard Grant
Understanding Emission, Absorption and Energy Transfer Involving Classical and Quantum Light Interacting with Molecules
了解涉及经典光和量子光与分子相互作用的发射、吸收和能量转移
- 批准号:
2347622 - 财政年份:2024
- 资助金额:
$ 10.09万 - 项目类别:
Standard Grant
Collective Quantum Thermodynamics: Quantum vs Classical
集体量子热力学:量子与经典
- 批准号:
MR/Y003845/1 - 财政年份:2024
- 资助金额:
$ 10.09万 - 项目类别:
Fellowship
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2423960 - 财政年份:2024
- 资助金额:
$ 10.09万 - 项目类别:
Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
- 批准号:
2336135 - 财政年份:2024
- 资助金额:
$ 10.09万 - 项目类别:
Standard Grant
CAREER: Symmetries and Classical Physics in Machine Learning for Science and Engineering
职业:科学与工程机器学习中的对称性和经典物理学
- 批准号:
2339682 - 财政年份:2024
- 资助金额:
$ 10.09万 - 项目类别:
Continuing Grant
A Polytopal View of Classical Polynomials
经典多项式的多面观
- 批准号:
2348676 - 财政年份:2024
- 资助金额:
$ 10.09万 - 项目类别:
Standard Grant
The Cultural Legacies of the British Empire: Classical Music's Colonial History (1750-1900)
大英帝国的文化遗产:古典音乐的殖民历史(1750-1900)
- 批准号:
MR/X03559X/1 - 财政年份:2024
- 资助金额:
$ 10.09万 - 项目类别:
Fellowship
FET: SHF: Small: A Verification Framework for Hybrid Classical and Quantum Protocols (VeriHCQ)
FET:SHF:小型:混合经典和量子协议的验证框架 (VeriHCQ)
- 批准号:
2330974 - 财政年份:2024
- 资助金额:
$ 10.09万 - 项目类别:
Standard Grant