Equivariant Derived Algebraic Geometry

等变导出的代数几何

基本信息

  • 批准号:
    1509652
  • 负责人:
  • 金额:
    $ 21.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

The project addresses directly the heart of algebraic topology: computing invariants like numbers, groups, and rings to understand spaces. The goal of algebraic topology is to systematically build a connection between algebraic objects like numbers and geometric objects like spaces. This connection allows a two-way flow of information, with algebraic invariants distinguishing spaces and topological methods informing algebraic problems. A beautiful example of the latter is the Goerss-Hopkins-Miller theory of topological modular forms, a way to encode elliptic curves (a fundamental object in algebraic geometry) in topological language. This builds new kinds of elliptic curves and highlights commonalities not visible through ordinary algebra. "Equivariant algebraic topology" remembers a collection of symmetries inherent in a space as part of the data, systematically grouping spaces with the same symmetries, and the numbers and invariants produced must reflect this. Remembering the extra structure makes richer, but more complicated, computations, and it allows one to tease apart otherwise interconnected problems. For example, using equivariant methods, the PI, Hopkins, and Ravenel solved the Kervaire Invariant One problem, the oldest outstanding problem in algebraic topology with roots dating back to the 1930s. This in turn gave information about how one can build spaces out of simpler ones like spheres. This project aims to build on the techniques developed in the solution, tackling other computational problems in algebra and topology. In particular, the project seeks to explore the interaction between the visible equivariance in settings like topological modular forms arising from underlying algebraic data and the constraints placed by the topology.Modern stable homotopy theory heavily utilizes the fact that the stable homotopy category behaves like a derived category of modules. Here the ground ring is not an ordinary ring but rather a ring spectrum, the sphere spectrum. Work over the last twenty years has described how to do algebraic geometry directly with commutative ring spectra: the theory of derived algebraic geometry. Many of the naturally occurring examples arise as commutative ring spectra with an action of a finite group, so one asks when there is an underlying equivariant commutative ring spectrum which is computationally accessible. This is the main focus of this project, a new area of research called "equivariant derived algebraic geometry". From a computational perspective, the goal is to understand the interplay between the homotopy groups of fixed points of a group action on a spectrum and the underlying homotopy groups of the spectrum. In general, this is a very difficult problem. One of the most exciting new tools developed to solve the Kervaire problem is a general slice filtration, a method which directly computes homotopy groups of fixed points. For Real Landweber exact theories, theories well-rooted in the underlying algebraic geometry, this is an extremely efficient tool. For larger groups, computations are tractable but much more mysterious. One of the goals of the project is to determine when the kinds of spectra arising from equivariant derived algebraic geometry have slices as nice as those for Real Landweber exact theories. Equivariant homotopy is also central to the homotopical approach to algebraic K-theory. Algebraic K groups are also exceedingly difficult to compute, and even knowing whether or not they are zero would settle long-standing number theory conjectures. The primary approach in homotopy is via a tower of spectra, the TR tower, built inductively out of fixed point spectra for topological Hochschild homology. The new equivariant machinery provides alternate, simpler construction of topological Hochschild homology, allowing us to evaluate it on Thom spectra and to build relative versions.
该项目直接解决了代数拓扑的核心问题:计算数字,群和环等不变量来理解空间。代数拓扑的目标是系统地建立代数对象(如数字)和几何对象(如空间)之间的联系。这种连接允许信息的双向流动,代数不变量区分空间和拓扑方法通知代数问题。后者的一个很好的例子是拓扑模形式的高斯-霍普金斯-米勒理论,这是一种用拓扑语言编码椭圆曲线(代数几何中的一个基本对象)的方法。这构建了新类型的椭圆曲线,并突出了通过普通代数看不到的共性。“等变代数拓扑”将空间中固有的对称性集合作为数据的一部分,系统地对具有相同对称性的空间进行分组,并且产生的数字和不变量必须反映这一点。记住额外的结构使计算更丰富,但更复杂,它允许人们梳理其他相互关联的问题。例如,使用等变方法,PI,霍普金斯和Ravenel解决了Kervaire Invariant One问题,这是代数拓扑学中最古老的突出问题,其根源可以追溯到20世纪30年代。这反过来又提供了关于如何从更简单的空间(如球体)中构建空间的信息。该项目旨在建立在解决方案中开发的技术基础上,解决代数和拓扑中的其他计算问题。特别是,该项目旨在探索在设置中的可见的等方差之间的相互作用,如由底层代数数据产生的拓扑模形式和由拓扑放置的约束。现代稳定同伦理论大量利用了这样一个事实,即稳定同伦范畴表现得像一个派生的模块范畴。这里的基环不是普通的环,而是一个环谱,即球谱。在过去的二十年里,人们描述了如何直接用交换环谱来做代数几何:导出代数几何的理论。许多自然发生的例子都是作为有限群作用的交换环谱出现的,所以人们会问,什么时候存在一个基础的等变交换环谱是计算上可访问的。这是这个项目的主要重点,一个新的研究领域称为“等变导出代数几何”。从计算的角度来看,我们的目标是了解同伦群的不动点的频谱上的群作用和频谱的同伦群之间的相互作用。一般来说,这是一个非常困难的问题。为解决Kervaire问题而开发的最令人兴奋的新工具之一是一般切片过滤,这是一种直接计算不动点的同伦群的方法。对于真实的Landweber精确理论,以及扎根于基本代数几何的理论,这是一个非常有效的工具。对于较大的群体,计算是容易处理的,但要神秘得多。该项目的目标之一是确定当从等变导出的代数几何中产生的各种光谱具有像真实的Landweber精确理论那样好的切片时。等变同伦也是代数K-理论的同伦方法的核心。代数K群的计算也非常困难,即使知道它们是否为零也会解决长期存在的数论难题。同伦的主要方法是通过一个谱塔,TR塔,归纳建立了拓扑Hochschild同调的不动点谱。新的等变机制提供了替代的,更简单的拓扑Hochschild同源性的建设,使我们能够评估它的Thom光谱,并建立相对的版本。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detecting exotic spheres in low dimensions using coker J
  • DOI:
    10.1112/jlms.12301
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mark Behrens;Michael Hill;Michael J. Hopkins;M. Mahowald
  • 通讯作者:
    Mark Behrens;Michael Hill;Michael J. Hopkins;M. Mahowald
On the André–Quillen homology of Tambara functors
论 Tambara 函子的 AndréQuillen 同调
  • DOI:
    10.1016/j.jalgebra.2017.06.029
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Hill, Michael A.
  • 通讯作者:
    Hill, Michael A.
Equivariant chromatic localizations and commutativity
等变色定位和交换性
The cohomology of C2-equivariant ?(1) and thehomotopy of koC2
C2-等变式 ?(1) 的上同调和 koC2 的同伦
  • DOI:
    10.2140/tunis.2020.2.567
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Guillou, Bertrand J.;Hill, Michael A.;Isaksen, Daniel C.;Ravenel, Douglas Conner
  • 通讯作者:
    Ravenel, Douglas Conner
The right adjoint to the equivariant operadic forgetful functor on incomplete Tambara functors
不完全 Tambara 函子上等变歌剧健忘函子的右伴随
  • DOI:
    10.1090/conm/729/14691
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Blumberg, Andrew J.;Hill, Michael A.
  • 通讯作者:
    Hill, Michael A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Hill其他文献

Computational fluid dynamics based digital twins of fixed bed bioreactors validate scaling principles for recombinant adeno-associated virus gene therapy manufacturing.
基于计算流体动力学的固定床生物反应器数字孪生验证了重组腺相关病毒基因治疗制造的缩放原理。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Michael Hill;Colten White;Shaoying Wang;John A Thomas;Brian DeVincentis;Nripen Singh
  • 通讯作者:
    Nripen Singh
Discretion and Welfare Rights in a British Context
英国背景下的自由裁量权和福利权
Taiwan: what kind of social policy regime?
台湾:什么样的社会政策制度?
Assessing needs for interdisciplinarity in agriculture, nutrition, and health education
评估农业、营养和健康教育跨学科的需求
  • DOI:
    10.1016/j.gfs.2023.100691
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Reshma P. Roshania;J. Yates;Lauren J. McIntyre;T. Chancellor;E. Fivian;Michael Hill;R. Isoto;P. Marinda;S. Narayanan;Louise Whatford;F. Zotor;S. Khandelwal
  • 通讯作者:
    S. Khandelwal
A common emNFKB1/em variant detected through antibody analysis in UK Biobank predicts risk of infection and allergy
通过英国生物银行中的抗体分析检测到的一种常见的 emNFKB1/em 变体预测了感染和过敏的风险
  • DOI:
    10.1016/j.ajhg.2023.12.013
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    8.100
  • 作者:
    Amanda Y. Chong;Nicole Brenner;Andres Jimenez-Kaufmann;Adrian Cortes;Michael Hill;Thomas J. Littlejohns;James J. Gilchrist;Benjamin P. Fairfax;Julian C. Knight;Flavia Hodel;Jacques Fellay;Gil McVean;Andres Moreno-Estrada;Tim Waterboer;Adrian V.S. Hill;Alexander J. Mentzer
  • 通讯作者:
    Alexander J. Mentzer

Michael Hill的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Hill', 18)}}的其他基金

Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
  • 批准号:
    2328867
  • 财政年份:
    2023
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Standard Grant
Molecular s-block Assemblies for Redox-active Bond Activation and Catalysis: Repurposing the s-block as 3d-elements
用于氧化还原活性键活化和催化的分子 s 块组装:将 s 块重新用作 3d 元素
  • 批准号:
    EP/X01181X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Research Grant
FRG: Collaborative Research: Trace Methods and Applications for Cut-and-Paste K-Theory
FRG:协作研究:剪切粘贴 K 理论的追踪方法和应用
  • 批准号:
    2052702
  • 财政年份:
    2021
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Standard Grant
Equivariant Approaches to Chromatic Homotopy
色同伦的等变方法
  • 批准号:
    2105019
  • 财政年份:
    2021
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Continuing Grant
Computations in Stable and Unstable Equivariant Chromatic Homotopy
稳定和不稳定等变色同伦的计算
  • 批准号:
    1811189
  • 财政年份:
    2018
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Continuing Grant
Nucleophilic Alkaline Earth Boryls: From Conception and Theory to Application
亲核碱土硼基化合物:从概念、理论到应用
  • 批准号:
    EP/R020752/1
  • 财政年份:
    2018
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Research Grant
Augmentation of Alkaline Earth Reactivity: An FLP Analogy
碱土反应性的增强:FLP 类比
  • 批准号:
    EP/N014456/1
  • 财政年份:
    2016
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Research Grant
Computations in Equivariant Homotopy and Algebraic K-Theory
等变同伦和代数 K 理论中的计算
  • 批准号:
    1207774
  • 财政年份:
    2012
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Standard Grant
Scalable, low-cost organic photovoltaic devices
可扩展、低成本的有机光伏器件
  • 批准号:
    EP/J50001X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Research Grant
Group 2: Elements of 21st Century Catalysis
第 2 组:21 世纪催化要素
  • 批准号:
    EP/I014519/1
  • 财政年份:
    2011
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Research Grant

相似国自然基金

tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
TET1/exosome-derived miR-22-3p/BTG1信号轴在膀胱癌化疗耐药中的作用与分子机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
一类DMOA-Derived Meroterpenoid的全合成研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
基于肝炎病毒嗜肝性对hESC-derived hepatocytes 体外分化过程中的关键因子分析
  • 批准号:
    81870432
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
hESC-derived hepatocytes 中抗HBV干扰素反应模式及关键ISGs 的功能分析
  • 批准号:
    81570567
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目

相似海外基金

Derived equivalences and autoequivalences in algebraic geometry
代数几何中的导出等价和自等价
  • 批准号:
    EP/X01066X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Fellowship
Derived Symmetries and the Alekseev-Torossian Conjecture: From Algebraic Geometry to Knotted Objects in Dimension 4
导出的对称性和 Alekseev-Torossian 猜想:从代数几何到 4 维中的结物体
  • 批准号:
    2305407
  • 财政年份:
    2023
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Standard Grant
Wall-crossing: from classical algebraic geometry to differential geometry, mirror symmetry and derived algebraic Geometry
穿墙:从经典代数几何到微分几何、镜面对称和派生代数几何
  • 批准号:
    EP/X032779/1
  • 财政年份:
    2023
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Fellowship
Shifted Symplectic & Poisson Structures and their Quantisations in the context of Derived Algebraic Geometry
移辛
  • 批准号:
    2747173
  • 财政年份:
    2022
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Studentship
Derived categories in arithmetic and algebraic geometry
算术和代数几何的派生范畴
  • 批准号:
    DGECR-2022-00444
  • 财政年份:
    2022
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Discovery Launch Supplement
Derived categories in arithmetic and algebraic geometry
算术和代数几何的派生范畴
  • 批准号:
    RGPIN-2022-03461
  • 财政年份:
    2022
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Discovery Grants Program - Individual
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
  • 批准号:
    2052936
  • 财政年份:
    2021
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
  • 批准号:
    2052750
  • 财政年份:
    2021
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
  • 批准号:
    2052934
  • 财政年份:
    2021
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
  • 批准号:
    2052665
  • 财政年份:
    2021
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了