AMC-SS: Stochastic Networks -- Analysis, Control and Applications
AMC-SS:随机网络——分析、控制和应用
基本信息
- 批准号:0906535
- 负责人:
- 金额:$ 33.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Stochastic models of complex networks with dynamic interactions arise in a wide variety of applications in science and engineering. Specific instances include high-tech manufacturing, customer service systems, telecommunications, computer systems, and gene regulatory networks. This project involves the study of a number of mathematical problems stemming from the challenges of analysing and controlling such stochastic networks. Some of the problems involve the development of general theory for broad classes of stochastic networks, while others focus on mathematical problems directly motivated by specific applications.Since the complexity of stochastic networks usually precludes exact analysis of detailed "microscopic" models, the focus here is on approximate models. Two levels of approximation are considered: first order approximations called fluid models, and second order approximations which frequently are diffusion models.Mathematical questions being addressed include rigorous justification of these approximations, analysing and controlling the behavior of the approximate models and interpreting the results for the original microscopic models. An important subtheme is understanding the interplay between the levels of approximation.Four topics are being studied:(i) dynamic scheduling for stochastic processing networks,(ii) analysis of processor sharing networks,(iii) connection level models for data networks,(iv) stochastic systems with delayed dynamics and state constraints. Some stochastic process aspects of these topics include study of singular diffusion control problems, analysis of measure-valued processes used to keep track of residual job sizes, foundational questions for reflected processes, and the asymptotic properties of functional stochastic differential equations with natural state constraints. Specific applications being investigated include Internet congestion control and biochemical reaction networks.Stochastic networks are mathematical models for complex systems involving dynamic interactions subject to uncertainty. Such networks arise in a wide variety of applications in science and engineering, especially in operations research, computer science, electrical engineering and bioscience/bioengineering. This grant funds research on mathematical problems arising from the need to analyse and control such stochastic networks. Two fundamental problems for such networks are(a) to identify and understand mechanisms that stabilize the systems, and(b) to quantify the performance of the systems under such stabilizing mechanisms.The networks under study are substantially more general than those that have been rigorously studied to date. Through their complexity and heterogeneity, these networks present challenging mathematical problems. This project involves the development of new mathematical theory and techniques as well as the application of this theory in studying specific problems such as Internet congestion control and understanding gene regulation. Collaborations with researchers familiar with areas of application, the training of graduate student researchers, and the dissemination of research results through publication in peer reviewed journals and presentations at cross-disciplinary research conferences are integral parts of the project.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。具有动态相互作用的复杂网络的随机模型在科学和工程中有着广泛的应用。具体的例子包括高科技制造、客户服务系统、电信、计算机系统和基因调控网络。该项目涉及研究一些数学问题,这些问题源于分析和控制这种随机网络的挑战。一些问题涉及到广泛的随机网络的一般理论的发展,而其他的问题则集中在直接由特定的应用所激发的数学问题上。由于随机网络的复杂性通常排除了详细的“微观”模型的精确分析,这里的重点是近似模型。两个层次的近似被认为是:第一阶近似称为流体模型,和第二阶近似,这往往是扩散models.Mathematical问题正在解决包括严格的理由,这些近似,分析和控制的行为的近似模型和解释的结果,为原来的微观模型。一个重要的子主题是理解近似水平之间的相互作用。正在研究的四个主题:(i)随机处理网络的动态调度,(ii)处理器共享网络的分析,(iii)数据网络的连接水平模型,(iv)具有延迟动态和状态约束的随机系统。这些主题的一些随机过程方面包括奇异扩散控制问题的研究,用于跟踪剩余工作大小的测量值过程的分析,反映过程的基础问题,以及具有自然状态约束的泛函随机微分方程的渐近性质。目前正在研究的具体应用包括互联网拥塞控制和生化反应网络。随机网络是复杂系统的数学模型,涉及动态相互作用的不确定性。这种网络出现在科学和工程的各种应用中,特别是在运筹学、计算机科学、电子工程和生物科学/生物工程中。该补助金资助因分析和控制此类随机网络而产生的数学问题的研究。这类网络的两个基本问题是:(a)识别和理解稳定系统的机制;(B)量化系统在这种稳定机制下的性能。由于其复杂性和异质性,这些网络提出了具有挑战性的数学问题。该项目涉及新的数学理论和技术的发展,以及该理论在研究特定问题,如互联网拥塞控制和理解基因调控中的应用。与熟悉应用领域的研究人员合作,研究生研究人员的培训,以及通过在同行评审期刊上发表和在跨学科研究会议上发表研究成果的传播是该项目的组成部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruth Williams其他文献
Discrimination reported by older adults living with mental health conditions: types, contexts and association with healthcare barriers
患有精神健康问题的老年人报告的歧视:类型、背景以及与医疗保健障碍的关联
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:4.4
- 作者:
Jeromey B. Temple;Bianca Brijnath;J. Enticott;Ariane J. Utomo;Ruth Williams;M. Kelaher - 通讯作者:
M. Kelaher
Circulation Research "In This Issue" Anthology.
- DOI:
10.1161/res.0000000000000275 - 发表时间:
2019-06 - 期刊:
- 影响因子:20.1
- 作者:
Ruth Williams - 通讯作者:
Ruth Williams
Deepak Srivastava: follows his heart to study the heart.
Deepak Srivastava:跟随他的心来研究心。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:20.1
- 作者:
D. Srivastava;Ruth Williams - 通讯作者:
Ruth Williams
Ruth Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruth Williams', 18)}}的其他基金
Dynamics of Stochastic Networks: Approximation, Analysis, and Control
随机网络动力学:近似、分析和控制
- 批准号:
2153866 - 财政年份:2022
- 资助金额:
$ 33.18万 - 项目类别:
Standard Grant
Collaborative Research: MODULUS: Uncovering and re-engineering chromatin modification circuits that dictate epigenetic cell memory
合作研究:MODULUS:揭示和重新设计决定表观遗传细胞记忆的染色质修饰电路
- 批准号:
2027947 - 财政年份:2020
- 资助金额:
$ 33.18万 - 项目类别:
Standard Grant
Stochastic Network Dynamics: Approximation, Analysis and Control
随机网络动力学:近似、分析和控制
- 批准号:
1712974 - 财政年份:2017
- 资助金额:
$ 33.18万 - 项目类别:
Continuing Grant
Stochastic Networks Conference 2016
2016 年随机网络会议
- 批准号:
1551486 - 财政年份:2016
- 资助金额:
$ 33.18万 - 项目类别:
Standard Grant
Dynamic Stochastic Networks: Analysis, Control and Applications
动态随机网络:分析、控制和应用
- 批准号:
1206772 - 财政年份:2012
- 资助金额:
$ 33.18万 - 项目类别:
Continuing Grant
IGMS: Dynamic Models in Synthetic Biology
IGMS:合成生物学中的动态模型
- 批准号:
0825686 - 财政年份:2009
- 资助金额:
$ 33.18万 - 项目类别:
Standard Grant
AMC-SS: Stochastic Networks - Control, Analysis and Applications
AMC-SS:随机网络 - 控制、分析和应用
- 批准号:
0604537 - 财政年份:2006
- 资助金额:
$ 33.18万 - 项目类别:
Standard Grant
Stochastic Networks: Analysis and Control
随机网络:分析与控制
- 批准号:
0305272 - 财政年份:2003
- 资助金额:
$ 33.18万 - 项目类别:
Continuing Grant
Stochastic Networks: Control and Performance
随机网络:控制和性能
- 批准号:
0071408 - 财政年份:2000
- 资助金额:
$ 33.18万 - 项目类别:
Standard Grant
相似国自然基金
SS31肽通过AMPK/SIRT3通路调控氧化磷酸化在脓毒症心肌病中的作用及机制研究
- 批准号:JCZRLH202501261
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
沙眼衣原体II型分泌系统(T2SS)次要假菌毛的鉴定及其分子组装机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
NrtR通过调控T6SS参与溶藻弧菌竞争定
植的分子机制
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
SMARCB1乙酰化修饰调控驱动基因SS18-
SSX1增强子活性影响滑膜肉瘤侵袭转移
的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
电针通过 Nrxn3SS4+/Cbln2/GluD1 信号介导的
AMPAR 失活在脊髓损伤修复中的机制研究
- 批准号:Q24H270038
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
铜绿假单胞菌T6SS调控因子TsrF作用机制研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
鰤鱼诺卡氏菌 VII 型分泌系统(T7SS)在致病
过程中的作用及机制初探
- 批准号:TGN24C190012
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于ICCP-SS双重干预系统的海水海砂型钢混凝土梁柱节点抗震性能与设计
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
不锈钢SS310在布雷顿循环中的环境断裂敏感性和机理研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
肠道类器官模型探讨T6SS在细菌感染过程中对宿主MAPK信号通路的调控作用及机制研究
- 批准号:32300597
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
AMC-SS Collaborative research - Stochastic Processes and Time Series Models: Algorithms, Asymptotics and Phase Transitions
AMC-SS 合作研究 - 随机过程和时间序列模型:算法、渐近和相变
- 批准号:
0805979 - 财政年份:2008
- 资助金额:
$ 33.18万 - 项目类别:
Continuing Grant
AMC-SS: Collaborative Research: Stochastic Processes and Time Series Models: Algorithms, Asymptotics, and Phase Transitions
AMC-SS:协作研究:随机过程和时间序列模型:算法、渐近和相变
- 批准号:
0902075 - 财政年份:2008
- 资助金额:
$ 33.18万 - 项目类别:
Continuing Grant
AMC-SS: Collaborative Research: Stochastic Processes and Time Series Models: Algorithms, Asymptotics, and Phase Transitions
AMC-SS:协作研究:随机过程和时间序列模型:算法、渐近和相变
- 批准号:
0806145 - 财政年份:2008
- 资助金额:
$ 33.18万 - 项目类别:
Continuing Grant
AMC-SS: Stochastic Simulation and Analysis of Biochemical Reaction Networks
AMC-SS:生化反应网络的随机模拟与分析
- 批准号:
0720142 - 财政年份:2007
- 资助金额:
$ 33.18万 - 项目类别:
Standard Grant
AMC-SS, Collaborative Research: Explorations in Stochastic Moving Boundary Value Problems
AMC-SS,协作研究:随机移动边值问题的探索
- 批准号:
0705260 - 财政年份:2007
- 资助金额:
$ 33.18万 - 项目类别:
Continuing Grant
AMC-SS Stochastic Modeling and Simulation for Traffic Flow
交通流 AMC-SS 随机建模与仿真
- 批准号:
0836699 - 财政年份:2007
- 资助金额:
$ 33.18万 - 项目类别:
Standard Grant
AMC-SS, Collaborative Research: Explorations in Stochastic Moving Boundary Value Problems
AMC-SS,协作研究:随机移动边值问题的探索
- 批准号:
0703855 - 财政年份:2007
- 资助金额:
$ 33.18万 - 项目类别:
Continuing Grant
AMC-SS: Multiscale Methods for Many-Particle Stochastic Systems: Coarse-Graining and Microscopic Reconstruction
AMC-SS:多粒子随机系统的多尺度方法:粗粒度和微观重建
- 批准号:
0715125 - 财政年份:2007
- 资助金额:
$ 33.18万 - 项目类别:
Standard Grant
AMC-SS: Stochastic Modeling and Methods in Financial Equilibrium Theory
AMC-SS:金融均衡理论中的随机建模和方法
- 批准号:
0706947 - 财政年份:2007
- 资助金额:
$ 33.18万 - 项目类别:
Standard Grant
AMC-SS: Measure Valued Processes and Stochastic Systems
AMC-SS:测量有价值的过程和随机系统
- 批准号:
0707111 - 财政年份:2007
- 资助金额:
$ 33.18万 - 项目类别:
Standard Grant














{{item.name}}会员




