Dynamics of Stochastic Networks: Approximation, Analysis, and Control
随机网络动力学:近似、分析和控制
基本信息
- 批准号:2153866
- 负责人:
- 金额:$ 23.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Stochastic models of complex networks with dynamic interactions arise in a wide variety of applications in science and engineering. Specific instances include biochemical reaction networks, high-tech manufacturing, computer systems, telecommunications, transportation, and business service systems. This project addresses mathematical questions stemming from the challenges of analyzing and controlling such stochastic networks. The research involves the development of general theory for some broad classes of stochastic networks and the study of questions directly motivated by specific applications. Since the complexity of stochastic networks usually precludes exact analysis of detailed “microscopic” models, the focus here is on approximate models. Two levels of approximation are considered: first-order approximations called fluid models, and second-order approximations, which frequently are diffusion models. New techniques and results will be developed with an eye toward application areas. The investigator will help train a diverse mathematics research workforce through collaboration with early career researchers and women researchers. The project also provides training opportunities for graduate students. This project will address mathematical questions associated with the analysis and control of stochastic network dynamics. Topics to be addressed include rigorous justification of approximations, analyzing and controlling the behavior of the approximate models, and interpreting the results for the original microscopic models. An important subtheme is understanding the interplay between levels of approximation. Five topics are to be studied:(i) Diffusion Approximations for (Bio)Chemical Reaction Networks and Nearly Density-Dependent Markov Chains;(ii) Analysis of Processor Sharing Networks;(iii) Congestion Control and Resource Entrainment in Data Networks;(iv) Networks with Random Order of Service and Reneging; and(v) Dynamic Control of Stochastic Processing Networks.Some stochastic process aspects of these topics include error quantification in the approximation of nearly density-dependent Markov chains by reflected diffusion processes, analysis of measure-valued processes used to track residual job sizes or patience times in stochastic networks with resource sharing and reneging, singular diffusion control problems, foundational questions for reflected processes, and numerical approximation of reflected diffusion processes in non-smooth domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
具有动态相互作用的复杂网络的随机模型在科学和工程中有着广泛的应用。具体实例包括生化反应网络、高科技制造、计算机系统、电信、运输和商业服务系统。这个项目解决了由分析和控制这种随机网络的挑战而产生的数学问题。这项研究包括发展几类广泛的随机网络的一般理论,以及研究直接由特定应用驱动的问题。由于随机网络的复杂性通常排除了对详细的“微观”模型的准确分析,这里的重点是近似模型。我们考虑了两个层次的近似:称为流体模型的一阶近似和通常是扩散模型的二阶近似。将着眼于应用领域开发新技术和新成果。研究人员将通过与早期职业研究人员和女性研究人员的合作,帮助培训一支多样化的数学研究队伍。该项目还为研究生提供了培训机会。这个项目将解决与随机网络动力学的分析和控制相关的数学问题。要解决的主题包括对近似的严格证明,分析和控制近似模型的行为,以及解释原始微观模型的结果。一个重要的副主题是理解近似级别之间的相互作用。将研究五个主题:(I)(生物)化学反应网络和几乎依赖密度的马氏链的扩散近似;(Ii)处理器共享网络的分析;(Iii)数据网络中的拥塞控制和资源获取;(Iv)具有随机服务顺序和放弃的网络;和(V)随机处理网络的动态控制。这些主题的一些随机过程方面包括反射扩散过程在近似密度依赖的马尔可夫链时的误差量化、用于跟踪资源共享和拒绝的随机网络中剩余作业大小或耐心时间的度量值过程的分析、奇异扩散控制问题、反射过程的基本问题以及非光滑领域中反射扩散过程的数值逼近。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruth Williams其他文献
Circulation Research "In This Issue" Anthology.
- DOI:
10.1161/res.0000000000000275 - 发表时间:
2019-06 - 期刊:
- 影响因子:20.1
- 作者:
Ruth Williams - 通讯作者:
Ruth Williams
Discrimination reported by older adults living with mental health conditions: types, contexts and association with healthcare barriers
患有精神健康问题的老年人报告的歧视:类型、背景以及与医疗保健障碍的关联
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:4.4
- 作者:
Jeromey B. Temple;Bianca Brijnath;J. Enticott;Ariane J. Utomo;Ruth Williams;M. Kelaher - 通讯作者:
M. Kelaher
Michael Potente: No Time to Waste.
迈克尔·波坦特:没有时间可以浪费。
- DOI:
10.1161/circresaha.117.311746 - 发表时间:
2017 - 期刊:
- 影响因子:20.1
- 作者:
Ruth Williams - 通讯作者:
Ruth Williams
Ruth Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruth Williams', 18)}}的其他基金
Collaborative Research: MODULUS: Uncovering and re-engineering chromatin modification circuits that dictate epigenetic cell memory
合作研究:MODULUS:揭示和重新设计决定表观遗传细胞记忆的染色质修饰电路
- 批准号:
2027947 - 财政年份:2020
- 资助金额:
$ 23.19万 - 项目类别:
Standard Grant
Stochastic Network Dynamics: Approximation, Analysis and Control
随机网络动力学:近似、分析和控制
- 批准号:
1712974 - 财政年份:2017
- 资助金额:
$ 23.19万 - 项目类别:
Continuing Grant
Stochastic Networks Conference 2016
2016 年随机网络会议
- 批准号:
1551486 - 财政年份:2016
- 资助金额:
$ 23.19万 - 项目类别:
Standard Grant
Dynamic Stochastic Networks: Analysis, Control and Applications
动态随机网络:分析、控制和应用
- 批准号:
1206772 - 财政年份:2012
- 资助金额:
$ 23.19万 - 项目类别:
Continuing Grant
IGMS: Dynamic Models in Synthetic Biology
IGMS:合成生物学中的动态模型
- 批准号:
0825686 - 财政年份:2009
- 资助金额:
$ 23.19万 - 项目类别:
Standard Grant
AMC-SS: Stochastic Networks -- Analysis, Control and Applications
AMC-SS:随机网络——分析、控制和应用
- 批准号:
0906535 - 财政年份:2009
- 资助金额:
$ 23.19万 - 项目类别:
Standard Grant
AMC-SS: Stochastic Networks - Control, Analysis and Applications
AMC-SS:随机网络 - 控制、分析和应用
- 批准号:
0604537 - 财政年份:2006
- 资助金额:
$ 23.19万 - 项目类别:
Standard Grant
Stochastic Networks: Analysis and Control
随机网络:分析与控制
- 批准号:
0305272 - 财政年份:2003
- 资助金额:
$ 23.19万 - 项目类别:
Continuing Grant
Stochastic Networks: Control and Performance
随机网络:控制和性能
- 批准号:
0071408 - 财政年份:2000
- 资助金额:
$ 23.19万 - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 23.19万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 23.19万 - 项目类别:
Standard Grant
Neural networks for stochastic partial differential equations
随机偏微分方程的神经网络
- 批准号:
2872613 - 财政年份:2023
- 资助金额:
$ 23.19万 - 项目类别:
Studentship
Collaborative Research: CIF: Small: Nonasymptotic Analysis for Stochastic Networks and Systems: Foundations and Applications
合作研究:CIF:小型:随机网络和系统的非渐近分析:基础和应用
- 批准号:
2207547 - 财政年份:2022
- 资助金额:
$ 23.19万 - 项目类别:
Standard Grant
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
- 批准号:
RGPIN-2019-06443 - 财政年份:2022
- 资助金额:
$ 23.19万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: CIF: Small: Nonasymptotic Analysis for Stochastic Networks and Systems: Foundations and Applications
合作研究:CIF:小型:随机网络和系统的非渐近分析:基础和应用
- 批准号:
2207548 - 财政年份:2022
- 资助金额:
$ 23.19万 - 项目类别:
Standard Grant
Parameter-Free Stochastic Gradient Descent: Fast, Self-Tuning Algorithms for Training Deep Neural Networks
无参数随机梯度下降:用于训练深度神经网络的快速自调整算法
- 批准号:
547242-2020 - 财政年份:2022
- 资助金额:
$ 23.19万 - 项目类别:
Postgraduate Scholarships - Doctoral
Construction of stochastic block models representing realistic networks
构建代表现实网络的随机块模型
- 批准号:
22K11911 - 财政年份:2022
- 资助金额:
$ 23.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Infinite horizon risk-sensitive control of diffusions with applications in stochastic networks
合作研究:无限视野风险敏感扩散控制及其在随机网络中的应用
- 批准号:
2216765 - 财政年份:2022
- 资助金额:
$ 23.19万 - 项目类别:
Standard Grant
Construction of stochastic superconductor neural networks towards ultra-low-power machine learning
面向超低功耗机器学习的随机超导神经网络的构建
- 批准号:
22H00220 - 财政年份:2022
- 资助金额:
$ 23.19万 - 项目类别:
Grant-in-Aid for Scientific Research (A)