Stochastic Networks: Control and Performance
随机网络:控制和性能
基本信息
- 批准号:0071408
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-01 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this project is to study mathematical problems associated with the control and performance analysis of stochastic networks. The network models being considered are heterogeneous, may have complex feedback mechanisms, and allow for stochastic variability in arrivals, service times and routing. Buffers in the network enable jobs to be stored that cannot be served immediately. In addition, the models with control allow for dynamic sequencing and alternate routing of jobs. Since the complexity of these network models usually precludes exact analysis, the focus is on approximate models. Two levels of approximation are being considered, namely fluid models (first order approximations) and diffusion models (second order approximations). Investigating the interplay between these models is an important feature of the research. The two main topics are (i) dynamic control through sequencing and alternate routing, and (ii) performance analysis for processor sharing networks. With regard to topic (i), some authors have successfully used diffusion control problems as formal tools for generating good control policies for some specific network models. However, there are few rigorous analyses of the performance of such policies. The PI is developing a systematic approach to finding and interpreting solutions of diffusion control problems and to analyzing the performance of the policies generated in this manner. Regarding topic (ii), the processor sharing discipline is an example of a service discipline for which a natural state descriptor involves a measure-valued process (to keep track of the residual service times of all jobs in the network). The PI is studying fluid and diffusion approximations of processor sharing networks with the aims of understanding the dynamics of such networks, obtaining measures of performance, and developing general tools for studying measure-valued processes associated with network models. Stochastic networks are used as models for complex manufacturing, telecommunications and computer systems. A challenging problem for such networks is to design controls that are simple to implement and yet are near optimal in an appropriate sense. Motivated by such problems, a number of mathematical questions associated with controlling and analyzing the performance of stochastic networks are being studied under this grant. Since the complexity of stochastic network models usually precludes exact analysis, the focus is on approximate models with a hierarchical structure. As with recent work on the performance analysis of some networks, the interplay between the levels in this hierarchy is an important feature of the research.
这个项目的目的是研究与随机网络的控制和性能分析相关的数学问题。正在考虑的网络模型是异质的,可能具有复杂的反馈机制,并且允许到达、服务时间和路线的随机变化。网络中的缓冲区允许存储不能立即提供服务的作业。此外,带有控制的模型允许动态排序和作业的替代路线。由于这些网络模型的复杂性通常无法进行准确的分析,因此重点放在近似模型上。考虑了两个层次的近似,即流体模型(一阶近似)和扩散模型(二阶近似)。研究这些模型之间的相互作用是这项研究的一个重要特点。主要的两个主题是(I)通过排序和备用路由进行动态控制,以及(Ii)处理器共享网络的性能分析。关于主题(I),一些作者已经成功地将扩散控制问题作为形式化工具来为某些特定的网络模型生成良好的控制策略。然而,很少有人对此类政策的执行情况进行严格的分析。国际和平研究所正在开发一种系统的方法,以寻找和解释扩散控制问题的解决办法,并分析以这种方式产生的政策的执行情况。关于主题(Ii),处理器共享规程是自然状态描述符涉及度量值过程(以跟踪网络中所有作业的剩余服务时间)的服务规程的示例。PI正在研究处理器共享网络的流动和扩散近似,目的是了解这种网络的动力学,获得性能测量,并开发通用工具来研究与网络模型相关的测量值过程。随机网络被用作复杂制造、电信和计算机系统的模型。对于这样的网络来说,一个具有挑战性的问题是设计出既易于实现又在适当意义上接近最佳的控制。在这些问题的推动下,一些与控制和分析随机网络性能相关的数学问题正在根据这项资助进行研究。由于随机网络模型的复杂性通常排除了精确分析,因此重点放在具有分层结构的近似模型上。与最近一些网络性能分析的工作一样,此层次结构中各层之间的相互作用是该研究的一个重要特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruth Williams其他文献
Discrimination reported by older adults living with mental health conditions: types, contexts and association with healthcare barriers
患有精神健康问题的老年人报告的歧视:类型、背景以及与医疗保健障碍的关联
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:4.4
- 作者:
Jeromey B. Temple;Bianca Brijnath;J. Enticott;Ariane J. Utomo;Ruth Williams;M. Kelaher - 通讯作者:
M. Kelaher
Circulation Research "In This Issue" Anthology.
- DOI:
10.1161/res.0000000000000275 - 发表时间:
2019-06 - 期刊:
- 影响因子:20.1
- 作者:
Ruth Williams - 通讯作者:
Ruth Williams
Deepak Srivastava: follows his heart to study the heart.
Deepak Srivastava:跟随他的心来研究心。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:20.1
- 作者:
D. Srivastava;Ruth Williams - 通讯作者:
Ruth Williams
Ruth Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruth Williams', 18)}}的其他基金
Dynamics of Stochastic Networks: Approximation, Analysis, and Control
随机网络动力学:近似、分析和控制
- 批准号:
2153866 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: MODULUS: Uncovering and re-engineering chromatin modification circuits that dictate epigenetic cell memory
合作研究:MODULUS:揭示和重新设计决定表观遗传细胞记忆的染色质修饰电路
- 批准号:
2027947 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Stochastic Network Dynamics: Approximation, Analysis and Control
随机网络动力学:近似、分析和控制
- 批准号:
1712974 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Dynamic Stochastic Networks: Analysis, Control and Applications
动态随机网络:分析、控制和应用
- 批准号:
1206772 - 财政年份:2012
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
IGMS: Dynamic Models in Synthetic Biology
IGMS:合成生物学中的动态模型
- 批准号:
0825686 - 财政年份:2009
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
AMC-SS: Stochastic Networks -- Analysis, Control and Applications
AMC-SS:随机网络——分析、控制和应用
- 批准号:
0906535 - 财政年份:2009
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
AMC-SS: Stochastic Networks - Control, Analysis and Applications
AMC-SS:随机网络 - 控制、分析和应用
- 批准号:
0604537 - 财政年份:2006
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Stochastic Networks: Analysis and Control
随机网络:分析与控制
- 批准号:
0305272 - 财政年份:2003
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
相似国自然基金
军民两用即兴网(Ad Hoc Networks)的研究
- 批准号:60372093
- 批准年份:2003
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Dynamics of Stochastic Networks: Approximation, Analysis, and Control
随机网络动力学:近似、分析和控制
- 批准号:
2153866 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Infinite horizon risk-sensitive control of diffusions with applications in stochastic networks
合作研究:无限视野风险敏感扩散控制及其在随机网络中的应用
- 批准号:
2216765 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Infinite horizon risk-sensitive control of diffusions with applications in stochastic networks
合作研究:无限视野风险敏感扩散控制及其在随机网络中的应用
- 批准号:
2108683 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Infinite horizon risk-sensitive control of diffusions with applications in stochastic networks
合作研究:无限视野风险敏感扩散控制及其在随机网络中的应用
- 批准号:
2108682 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Control of stochastic mean-field equations with applications to brain networks (A10*)
随机平均场方程的控制及其在脑网络中的应用 (A10*)
- 批准号:
413877837 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Collaborative Research Centres
Reinforcement Learning and Kullback-Leibler Stochastic Optimal Control for Complex Networks
复杂网络的强化学习和 Kullback-Leibler 随机最优控制
- 批准号:
1935389 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Stochastic Approach to Control of Large Scale Networks
大规模网络控制的随机方法
- 批准号:
1913131 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Stochastic inference and control of complex biological networks
复杂生物网络的随机推理和控制
- 批准号:
1711548 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Ergodic Control of Stochastic Differential Equations Driven By a Class of Pure-Jump Levy Processes, and Applications to Stochastic Networks
合作研究:一类纯跳跃 Levy 过程驱动的随机微分方程的遍历控制及其在随机网络中的应用
- 批准号:
1715210 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Ergodic Control of Stochastic Differential Equations Driven By a Class of Pure-Jump Levy Processes, and Applications to Stochastic Networks
合作研究:一类纯跳跃 Levy 过程驱动的随机微分方程的遍历控制及其在随机网络中的应用
- 批准号:
1715875 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant