Empirical likelihood with infinitely many constraints

具有无限多个约束的经验似然

基本信息

  • 批准号:
    0906551
  • 负责人:
  • 金额:
    $ 13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

A powerful method to do inference in models with finitely many parametric constraints is the empirical likelihood approach.This nonparametric maximization method was originally introduced by Owen in order to construct confidence regions for the underlying parameter.In the mean time the empirical likelihood method has been shown to also result in efficient estimation and testing. Needed are generalizations of this method that allow for semiparametric constraints and allow for infinitely many (parametric or semiparametric) constraints.The investigator extends the scope of the empirical likelihood into these two directions. This research advances the theory of estimation in semiparametric models and provides new methods to efficiently analyze data in a wide array of concrete problems. In the process technical problems of independent interest such a central limit theorems for quadratic forms with increasing dimensions are solved.Semiparametric models are widespread in many fields that use statistics.Although this research is theoretical in nature, it has a strong practical impact by providing more effective inference methods for all those fields.For example, results on time series have applications in economic forecasting and in mathematical finance; results on bivariate models have applications in actuarial sciences and in medical research. In medical research bivariate data naturally arise as pre- and post-treatment measurements.The research will provide ample opportunities to prepare graduate students for careers in both industry and academics.
在具有有限多个参数约束的模型中进行推断的一种强有力的方法是经验似然方法。这种非参数极大化方法最初是由Owen提出的,目的是为基础参数构造置信域。同时,经验似然方法也被证明是有效的估计和检验方法。需要的是这种方法的推广,它允许半参数约束和无限多(参数或半参数)约束。研究者将经验似然的范围扩展到这两个方向。这一研究推进了半参数模型的估计理论,并为在广泛的具体问题中有效地分析数据提供了新的方法。在这一过程中,解决了增维二次型的中心极限定理等独立感兴趣的技术问题。半参数模型广泛存在于许多使用统计学的领域。虽然这项研究具有理论性质,但它通过为所有这些领域提供更有效的推理方法,具有很强的实际影响。例如,关于时间序列的结果在经济预测和数学金融中有应用;关于二元模型的结果在精算科学和医学研究中有应用。在医学研究中,双变量数据自然会作为治疗前和治疗后的衡量标准出现。这项研究将为研究生在行业和学术界的职业生涯提供充足的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anton Schick其他文献

Estimating Joint Distributions of Markov Chains
Efficient Estimation in a Semiparametric Autoregressive Model
Contactless Functionality Inspection of Flat-Panel-Display Pixels and Thin-Film Transistors by Capacitive Coupling
通过电容耦合对平板显示器像素和薄膜晶体管进行非接触式功能检查
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    M. Koerdel;F. Alatas;Anton Schick;J. Jongman;Chandra Sekhar;Stefan J. Rupitsch;R. Lerch
  • 通讯作者:
    R. Lerch
Inference about the slope in linear regression: an empirical likelihood approach
Estimating the Innovation Distribution in Nonlinear Autoregressive Models

Anton Schick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anton Schick', 18)}}的其他基金

Efficient Estimation in Semiparametric Models
半参数模型的有效估计
  • 批准号:
    0405791
  • 财政年份:
    2004
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Efficient Estimation in Semiparametric Time Series Models
半参数时间序列模型的高效估计
  • 批准号:
    0072174
  • 财政年份:
    2000
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: On the Construction of Efficient Estimates in Semi-Parametric and Nonparametric Models
数学科学:半参数和非参数模型中有效估计的构建
  • 批准号:
    9206138
  • 财政年份:
    1992
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant

相似海外基金

Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 13万
  • 项目类别:
    Studentship
Leveraging Telehealth to Identify Infants at Elevated Likelihood for Autism in the First Year of life
利用远程医疗来识别出生后第一年患自闭症可能性较高的婴儿
  • 批准号:
    10712632
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
  • 批准号:
    10714225
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
Mobile app to identify children with high likelihood of autism diagnosis
用于识别自闭症诊断可能性高的儿童的移动应用程序
  • 批准号:
    10056705
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant for R&D
Impact of Medicare Polices on Beneficiaries with ADRD
医疗保险政策对 ADRD 受益人的影响
  • 批准号:
    10728582
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
Sieve based full likelihood approach for the Cox proportional hazards model with applications to immunotherapies trials
基于筛法的 Cox 比例风险模型的完全似然法及其在免疫治疗试验中的应用
  • 批准号:
    10577723
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
Laparoscopic surgical dynamic navigation using maximum likelihood estimation of organ deformations
使用器官变形最大似然估计的腹腔镜手术动态导航
  • 批准号:
    23H00480
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Scalable Computational Methods for Genealogical Inference: from species level to single cells
用于谱系推断的可扩展计算方法:从物种水平到单细胞
  • 批准号:
    10889303
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
A new parametric model, likelihood methods, and other advancements for multivariate extremes
新的参数模型、似然方法和多元极值的其他进步
  • 批准号:
    2311164
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Bayesian modeling of multivariate mixed longitudinal responses with scale mixtures of multivariate normal distributions
具有多元正态分布尺度混合的多元混合纵向响应的贝叶斯建模
  • 批准号:
    10730714
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了