Efficient Estimation in Semiparametric Time Series Models

半参数时间序列模型的高效估计

基本信息

  • 批准号:
    0072174
  • 负责人:
  • 金额:
    $ 8.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-08-01 至 2003-09-30
  • 项目状态:
    已结题

项目摘要

Semiparametric models play a major role in many fields and have been extensively studied over the last two decades. Great emphasis has been placed on models with independent (and identically) distributed observations and quite some progress has been made in this case. Models with dependent observations, however, been mainly neglected up to now from an efficiency point of view. The proposed research will tackle open issues in the construction of efficient estimates and tests in semiparametric models with an emphasis on models with dependent observations. Such models include stationary and ergodic Markov chains and other time series models which are plentiful in many fields such as econometrics and financial mathematics. Efficient estimation of the finite-dimensional component as well as aspects of the infinite-dimensional component will be addressed. The latter include innovation distributions in time series models, invariant distributions of ergodic Markov chains, and stationary distributions of several consecutive observations.The main emphasis of the proposed research will be to develop a methodology for the construction of efficient estimates in semiparametric models with dependent observations. In the process the proposed research will have to develop methods that deal with the difficulties associated with an efficient score function that cannot be calculated explicitly, a problem that is also of great interest for models with independent observations. Finally, the proposed research will continue the work of the principal investigator in semiparametric regression models with an emphasis on improving existing methods of constructing root-n consistent and efficient estimates.
半参数模型在许多领域发挥着重要作用,并且在过去二十年中得到了广泛的研究。人们非常重视具有独立(且相同)分布观测值的模型,并且在这种情况下已经取得了相当大的进展。 然而,从效率的角度来看,具有相关观测值的模型迄今为止主要被忽视。 拟议的研究将解决半参数模型中构建有效估计和测试的开放问题,重点是具有相关观测值的模型。 此类模型包括平稳和遍历马尔可夫链以及其他时间序列模型,这些模型在计量经济学和金融数学等许多领域中都很丰富。 将解决有限维分量以及无限维分量的各方面的有效估计。 后者包括时间序列模型中的创新分布、遍历马尔可夫链的不变分布以及多个连续观测值的平稳分布。拟议研究的主要重点将是开发一种在具有相关观测值的半参数模型中构建有效估计的方法。 在此过程中,所提出的研究必须开发出方法来解决与无法明确计算的有效得分函数相关的困难,这个问题对于具有独立观察的模型也很感兴趣。 最后,拟议的研究将继续主要研究者在半参数回归模型方面的工作,重点是改进构建根 n 一致且有效估计的现有方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anton Schick其他文献

Estimating Joint Distributions of Markov Chains
Efficient Estimation in a Semiparametric Autoregressive Model
Contactless Functionality Inspection of Flat-Panel-Display Pixels and Thin-Film Transistors by Capacitive Coupling
通过电容耦合对平板显示器像素和薄膜晶体管进行非接触式功能检查
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    M. Koerdel;F. Alatas;Anton Schick;J. Jongman;Chandra Sekhar;Stefan J. Rupitsch;R. Lerch
  • 通讯作者:
    R. Lerch
Inference about the slope in linear regression: an empirical likelihood approach
Estimating the Innovation Distribution in Nonlinear Autoregressive Models

Anton Schick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anton Schick', 18)}}的其他基金

Empirical likelihood with infinitely many constraints
具有无限多个约束的经验似然
  • 批准号:
    0906551
  • 财政年份:
    2009
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Standard Grant
Efficient Estimation in Semiparametric Models
半参数模型的有效估计
  • 批准号:
    0405791
  • 财政年份:
    2004
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: On the Construction of Efficient Estimates in Semi-Parametric and Nonparametric Models
数学科学:半参数和非参数模型中有效估计的构建
  • 批准号:
    9206138
  • 财政年份:
    1992
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Standard Grant

相似海外基金

Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
  • 批准号:
    RGPIN-2018-06466
  • 财政年份:
    2022
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Discovery Grants Program - Individual
Sparse and Efficient Estimation with Semiparametric Models in Meta-Analysis
荟萃分析中半参数模型的稀疏有效估计
  • 批准号:
    2113674
  • 财政年份:
    2021
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Continuing Grant
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
  • 批准号:
    RGPIN-2018-06466
  • 财政年份:
    2021
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
  • 批准号:
    RGPIN-2018-06466
  • 财政年份:
    2020
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
  • 批准号:
    RGPIN-2018-06466
  • 财政年份:
    2019
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
  • 批准号:
    RGPIN-2018-06466
  • 财政年份:
    2018
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient estimation in semiparametric regression with possibly incomplete data
使用可能不完整的数据进行半参数回归的有效估计
  • 批准号:
    0907014
  • 财政年份:
    2009
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Standard Grant
Semiparametric Efficient Estimation of Models of Measurement Errors and Missing Data
测量误差和缺失数据模型的半参数高效估计
  • 批准号:
    0452143
  • 财政年份:
    2005
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Continuing Grant
Efficient Estimation in Semiparametric Models
半参数模型的有效估计
  • 批准号:
    0405791
  • 财政年份:
    2004
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Standard Grant
CAREER: Efficient and Robust Semiparametric Estimation in Time Series Models
职业:时间序列模型中高效且稳健的半参数估计
  • 批准号:
    9701959
  • 财政年份:
    1997
  • 资助金额:
    $ 8.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了