Cell-Responsive Biomaterials as Tissue Engineering Scaffolds
作为组织工程支架的细胞响应生物材料
基本信息
- 批准号:0907067
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-15 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award by the Biomaterials program in the Division of Materials Research to the Texas Engineering Experiment Station (TAMU) is to develop a series of collagen-mimetic polyurethanes that combine the strength and tunability of synthetic elastomers with the cell-responsive degradation of native collagen. Tissue engineering has emerged as a promising alternative for ligament reconstruction when traditional transplants are unavailable or fail. Success of ligament tissue engineering strategies depend upon 1) the construct retaining sufficient mechanical properties to stabilize the joint throughout remodeling; and 2) the new tissue receiving the appropriate level of load for directed collagenous organization/alignment. It continues to be difficult to both predict and tailor the non-specific hydrolysis of current synthetic biomaterials; whereas, natural materials are limited by mass-production, variability, or lack the tensile properties necessary for ligament applications. New biomaterials are needed that can meet the complex design criteria necessary for ligament repair. By yielding control of scaffold degradation to the cell, the scaffold will degrade at a rate that best promotes tissue formation and organization. The proposed studies will provide the synthetic routes and predictive structure-property relationships necessary to use these biomaterials in tissue engineering scaffolds. In addition, systematic study of these novel polyurethanes will be carried out to delineate individual effects of degradation and mechanical load on material properties. The ability to predict how the tensile properties of a scaffold change during degradation and how these processes are influenced by loading is critical in the rational design of ligament scaffolds. On a grander scale, the structural models and methodology developed in this research will also be applicable to other clinical specialties in which biodegradation shows promise in improving patient care (e.g. cardiovascular tissue engineering, biodegradable stents, fixation devices, etc.). By this award, the PI will study the synthetic routes and predictive structure-property relationships necessary to use collagen-like polyurethanes that combine the strength and tunability of synthetic polyurethane with the cell-responsive degradation of native collagen. in tissue engineering scaffolds. The proposed research will be used as an educational and training tool to (1) increase the exposure to exciting biomedical research, and (2) prepare students to pursue careers in science and engineering. In addition, the PI plan to broaden the participation of undergraduate students by recruiting these students for summer internships from Prairie View A&M University, a Historically Black University. The interdisciplinary and multi-scale nature of the proposed research will provide a rigorous training ground to prepare both undergraduate and graduate students for careers in academia, national laboratories, or industry. The research program will be used to foster critical thinking and equip students with state-of-the-art experimental skills in chemistry, polymer science and engineering. In addition, reports, theses, manuscript drafting, presentations at weekly group meetings, and opportunities to present at regional and national meetings will foster effective communication skills. Finally, the principles and results coming out of this research will be incorporated into courses taught by the PI to educate students and encourage interest in biomaterial research.
材料研究部的生物材料项目授予德克萨斯工程实验站(TAMU)的这一奖项旨在开发一系列胶原模拟聚氨酯,该聚氨酯将合成弹性体的强度和可调性与天然胶原的细胞响应性降解联合收割机结合起来。当传统的移植无法获得或失败时,组织工程已经成为韧带重建的一个有前途的替代方案。韧带组织工程策略的成功取决于1)结构保持足够的机械性能,以在整个重塑过程中稳定关节;和2)新组织接受适当水平的载荷,以定向胶原组织/对齐。预测和定制当前合成生物材料的非特异性水解仍然是困难的;而天然材料受到大规模生产、可变性或缺乏韧带应用所需的拉伸性能的限制。需要新的生物材料,可以满足韧带修复所需的复杂设计标准。通过将支架降解的控制权交给细胞,支架将以最佳促进组织形成和组织化的速率降解。 拟议的研究将提供必要的合成路线和预测的结构-性能关系,使用这些生物材料在组织工程支架。此外,这些新的聚氨酯将进行系统的研究,以描绘降解和机械负荷对材料性能的个别影响。预测降解过程中支架的拉伸性能如何变化以及这些过程如何受到载荷的影响的能力在韧带支架的合理设计中至关重要。在更大的范围内,本研究中开发的结构模型和方法也将适用于其他临床专业,其中生物降解有望改善患者护理(例如心血管组织工程,可生物降解支架,固定器械等)。通过该奖项,PI将研究使用胶原蛋白样聚氨酯所需的合成路线和预测结构-性能关系,该聚氨酯将合成聚氨酯的强度和可调性与天然胶原蛋白的细胞响应性降解相结合。在组织工程支架中。拟议的研究将被用作教育和培训工具,以(1)增加接触令人兴奋的生物医学研究,(2)为学生从事科学和工程职业做好准备。此外,PI计划通过从历史上的黑人大学Prairie View A M University招募这些学生进行暑期实习来扩大本科生的参与。拟议研究的跨学科和多规模性质将提供严格的培训基础,为本科生和研究生在学术界,国家实验室或工业界的职业生涯做好准备。该研究项目将用于培养批判性思维,并为学生提供化学、高分子科学和工程领域最先进的实验技能。此外,报告、论文、手稿起草、在每周小组会议上的发言以及在区域和国家会议上发言的机会将培养有效的沟通技能。最后,这项研究的原理和结果将被纳入PI教授的课程中,以教育学生并鼓励对生物材料研究的兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth Cosgriff-Hernandez其他文献
PO-04-106 USING CONDUCTIVE HYDROGELS TO SHAPE RF ABLATION LESIONS
PO-04-106:使用导电水凝胶塑造射频消融病灶
- DOI:
10.1016/j.hrthm.2025.03.1240 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:5.700
- 作者:
Lukas M. Jaworski;Drew Bernard;Mathews Medayil John;Derek Bashe;Fei Xu;Meng-Hsuan Sung;Allison Post;Elizabeth Cosgriff-Hernandez;Mehdi Razavi - 通讯作者:
Mehdi Razavi
PO-709-08 CONDUCTIVE HYDROGELS FOR RF ENERGY DELIVERY: A NOVEL APPLICATION
- DOI:
10.1016/j.hrthm.2022.03.1115 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Allison Post;Mathews Medayil John;Skylar Buchan;Drew Bernard;Gabriel Rodriguez-Rivera;Abdi Rasekh;Elizabeth Cosgriff-Hernandez;Mehdi Razavi - 通讯作者:
Mehdi Razavi
MP-483494-002 ELIMINATING STEAM POPS AND IMPROVING LESION SAFETY IN ATRIAL ABLATION WITH CONDUCTIVE HYDROGELS
MP-483494-002 利用导电水凝胶消除心房消融中的蒸汽爆鸣声并提高病变安全性
- DOI:
10.1016/j.hrthm.2024.03.434 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Lukas M. Jaworski;Drew Bernard;Allison Post;Elizabeth Cosgriff-Hernandez;Mehdi Razavi - 通讯作者:
Mehdi Razavi
Advanced manufacturing of coil-reinforced multilayer vascular grafts to optimize biomechanical performance
线圈增强多层血管移植物的先进制造以优化生物力学性能
- DOI:
10.1016/j.actbio.2025.04.020 - 发表时间:
2025-05-15 - 期刊:
- 影响因子:9.600
- 作者:
Andrew Robinson;David Jiang;Abbey Nkansah;Juan S. Herrera Duran;Jonathan Leung;Madeline Laude;John Craig;Leopold Guo;Lucas Timmins;Elizabeth Cosgriff-Hernandez - 通讯作者:
Elizabeth Cosgriff-Hernandez
A Review of Integrin-Mediated Endothelial Cell Phenotype in the Design of Cardiovascular Devices
- DOI:
10.1007/s10439-018-02171-3 - 发表时间:
2018-11-28 - 期刊:
- 影响因子:5.400
- 作者:
Allison Post;Ellen Wang;Elizabeth Cosgriff-Hernandez - 通讯作者:
Elizabeth Cosgriff-Hernandez
Elizabeth Cosgriff-Hernandez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth Cosgriff-Hernandez', 18)}}的其他基金
NSF/DMR-BSF: Nanoparticle-Stabilized PolyHIPEs that Promote Integrin-Mediated Osteogenesis
NSF/DMR-BSF:促进整合素介导的成骨的纳米颗粒稳定的 PolyHIPE
- 批准号:
1709328 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
NSF/DMR-BSF: Nanoparticle-Stabilized PolyHIPEs that Promote Integrin-Mediated Osteogenesis
NSF/DMR-BSF:促进整合素介导的成骨的纳米颗粒稳定的 PolyHIPE
- 批准号:
1822196 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Biomaterials Day at Texas A&M University
德克萨斯州生物材料日
- 批准号:
1117599 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
BRIGE: Biomedical Applications of High Internal Phase Emulsions
BRIGE:高内相乳液的生物医学应用
- 批准号:
0926824 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
SL-responsive β-半乳糖苷酶AB47 影响灰霉菌致病性的机制研究
- 批准号:2021JJ40059
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Stimuli-responsive biomaterials for wound healing and drug delivery
职业:用于伤口愈合和药物输送的刺激响应生物材料
- 批准号:
2239750 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Genetically Manipulating Protein Expression to Probe 3D Cell Behavior using Ultrasound-Responsive Biomaterials
使用超声响应生物材料对蛋白质表达进行基因操作以探测 3D 细胞行为
- 批准号:
10712639 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Development of photo-responsive biomaterials mimicking brain microenvironment
模拟大脑微环境的光响应生物材料的开发
- 批准号:
16K14577 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of Novel Microcarriers Using Smart Stimuli-Responsive Biomaterials
使用智能刺激响应生物材料开发新型微载体
- 批准号:
484477-2015 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Signal-responsive biomaterials for wound healing
用于伤口愈合的信号响应生物材料
- 批准号:
15K12543 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Redox-responsive hydrogels as potent matrices for fabrication of cell-based biomaterials
氧化还原响应水凝胶作为制造细胞生物材料的有效基质
- 批准号:
15K14238 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Generation of 3D Bioprinted Gradient, Chiral, and Stimuli-Responsive Nanocomposite Hydrogelsas Multifunctional Biomaterials for Cell-Biomaterial Interaction Studies
生成 3D 生物打印梯度、手性和刺激响应纳米复合水凝胶作为细胞-生物材料相互作用研究的多功能生物材料
- 批准号:
268394705 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Research Grants
Collaborative Research: Performance and Evolution of Environmentally Responsive Biomaterials in a Unique Biological Adhesive System : Spider Orb Web Capture Threads
合作研究:环境响应型生物材料在独特的生物粘合剂系统中的性能和进化:Spider Orb Web Capture Threads
- 批准号:
1257809 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: The Performance and Evolution of Environmentally Responsive Biomaterials in a Unique Biological Adhesive System: Spider Orb Web Capture Threads
合作研究:环境响应型生物材料在独特的生物粘合剂系统中的性能和演变:Spider Orb Web 捕获线
- 批准号:
1257719 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Catch and Release: Biomolecular Ligation and Cleavage Strategies for Generating Instructive and Dynamically Responsive 3D Biomaterials
捕获和释放:用于生成指导性和动态响应 3D 生物材料的生物分子连接和切割策略
- 批准号:
1105300 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant