Catch and Release: Biomolecular Ligation and Cleavage Strategies for Generating Instructive and Dynamically Responsive 3D Biomaterials
捕获和释放:用于生成指导性和动态响应 3D 生物材料的生物分子连接和切割策略
基本信息
- 批准号:1105300
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award by the Biomaterials program in the Division of Materials Research to University of Illinois at Urbana-Champaign is to create a robust system based on collagen-glycosaminoglycan biomaterials, benzophenone photoimmobilization, and stimuli-responsive release chemistries that enables both spatial and temporal control over the presentation of a wide range of adhesive and proliferative cues (growth factors, ligands, proteins, carbohydrates, genetic sequences, etc.). The systematic approach used here to integrate collagen biomaterials with photochemically controlled immobilization techniques will enable design of new classes of biomaterials for complex tissue engineering applications that recapitulate much of the biomolecular complexity found in native tissues and tissue interfaces. Simple, yet generic tethering chemistries that allow spatial localization of a wide range of biomolecules as well as exogenously or endogenously cued release of the same biomolecules will be invaluable for generating novel classes of instructive biomaterials. Such materials would offer the ability to mimic the dynamic and spatial heterogeneities of the natural extracellular matrix. Apart from basic insights into developing molecularly general methods for creating spatially and temporally patterned instructive cues within 3D biomaterials, this work will enable fabrication of new classes of biomaterials for both translational regenerative medicine as well as mechanistic investigations of cell behavior. Broader impacts of this work are both to re-imagine how biomaterials can be used to control cell behaviors as well as to provide a valuable multidisciplinary training experience that affords significant research projects for undergraduates from multiple departments and colleges across campus. In doing this, this project will create a highly interdisciplinary environment that exposes, educates, and empowers the next generation of undergraduate and graduate engineers and chemists to address critical challenges at the intersection of biological, physical, and engineering sciences. Tissues are complex, three-dimensional environments that present multiple types of cues which regulate cell fate. The ability to spatially control the display of biomolecules within three-dimensional biomaterials does not currently exist, but this is a fundamental technological gap that must be bridged to develop next generation biomaterials for use both in the body, to regenerate tissues, and outside of the body, to study how cells sense and respond to their microenvironment. Materials created using the patterning tools developed here will be both instructive and responsive to surrounding cells and tissues, and will provide mechanistic insights into cell-matrix interactions as well advanced bioactive materials for more complex regenerative medicine applications. Through a coordinated research and educational plan, the project will directly support a number of critical outreach programs on campus. The tools developed during this project will serve as the foundation for ongoing and future novel research projects at the confluence of chemistry-biology-engineering disciplines for under-represented undergraduate students in science and engineering, and will form the basis for a new teaching module in an ongoing Tissue Engineering course on campus.
该奖项由伊利诺伊大学厄巴纳-香槟分校材料研究部的生物材料项目授予,旨在创建一个基于胶原蛋白-糖胺聚糖生物材料、二苯甲酮光固定和刺激响应释放化学物质的强大系统,该系统能够在空间和时间上控制各种粘附和增殖线索的呈现(生长因子、配体、蛋白质、碳水化合物、基因序列等)。这里使用的系统方法,将胶原蛋白生物材料与光化学控制的固定化技术,将使设计的新类别的生物材料的复杂的组织工程应用,概括了大部分的生物分子的复杂性中发现的天然组织和组织界面。简单而通用的拴系化学,允许空间定位的范围广泛的生物分子,以及外源或内源提示释放相同的生物分子将是非常宝贵的,用于产生新类别的有益的生物材料。这样的材料将提供模仿天然细胞外基质的动态和空间异质性的能力。除了开发分子一般方法的基本见解,用于在3D生物材料中创建空间和时间模式化的指导线索外,这项工作还将使新型生物材料的制造成为可能,用于转化再生医学以及细胞行为的机械研究。这项工作的更广泛的影响是重新想象生物材料如何用于控制细胞行为,以及提供宝贵的多学科培训经验,为来自校园多个部门和学院的本科生提供重要的研究项目。在这样做的过程中,该项目将创建一个高度跨学科的环境,暴露,教育和授权下一代本科生和研究生工程师和化学家,以解决生物,物理和工程科学交叉的关键挑战。组织是复杂的三维环境,呈现多种类型的调节细胞命运的线索。目前还不存在在三维生物材料中空间控制生物分子显示的能力,但这是一个基本的技术差距,必须弥合这一差距,以开发下一代生物材料,用于体内再生组织和体外研究细胞如何感知和响应其微环境。使用这里开发的图案化工具创建的材料将对周围的细胞和组织具有指导性和响应性,并将提供对细胞-基质相互作用的机械见解以及用于更复杂的再生医学应用的先进生物活性材料。通过一个协调的研究和教育计划,该项目将直接支持校园内的一些重要的外展计划。在这个项目中开发的工具将作为基础,为正在进行的和未来的新的研究项目,在化学,生物学,工程学科的汇合处,为代表性不足的本科生在科学和工程,并将形成一个新的教学模块的基础上正在进行的组织工程课程在校园里。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brendan Harley其他文献
3195 – MICROGEL ENCAPSULATION OF MURINE HEMATOPOIETIC STEM CELLS
- DOI:
10.1016/j.exphem.2023.06.302 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Gunnar Thompson;Aidan Gilchrist;Alison Nunes;Ana Mora-Boza;Vincent Lam;Andrés García;Brendan Harley - 通讯作者:
Brendan Harley
Brendan Harley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brendan Harley', 18)}}的其他基金
MRI: Acquisition of a 3D bioprinting system to generate composite biomaterials for regenerative medicine
MRI:收购 3D 生物打印系统以生成用于再生医学的复合生物材料
- 批准号:
1726634 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
EAGER: Biomanufacturing the hematopoietic stem cell niche
EAGER:造血干细胞生态位的生物制造
- 批准号:
1547811 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似海外基金
Accelerated carbon dioxide release from sedimentary rocks in a warming world
在变暖的世界中沉积岩加速二氧化碳释放
- 批准号:
NE/Y000838/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Mechanistic Multiscale Modelling Of Drug Release from Immediate Release Tablets
速释片剂药物释放的机制多尺度建模
- 批准号:
EP/X032019/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
CAREER: CAS: Organic Photochemistry for Light-Driven CO2 Capture and Release
职业:CAS:光驱动二氧化碳捕获和释放的有机光化学
- 批准号:
2338206 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: A Bottom Up pAproach Toward Understanding the Sunlight Driven Mechanisms and Pathways for the Release of Metals from Petroleum.
职业:一种自下而上的方法来了解阳光驱动的机制和从石油中释放金属的途径。
- 批准号:
2340743 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Molecular mechanisms that regulate the kinetics of neurotransmitter release
调节神经递质释放动力学的分子机制
- 批准号:
DP240102418 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Discovery Projects
Mechanistic Multiscale Modelling of Drug Release from Immediate Release Tablets
速释片剂药物释放的机制多尺度建模
- 批准号:
EP/X031969/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Evaluation and optimisation of new engineered human human apoferritins: protein nanocages for targeted drug delivery and intracellular cargo release
新型工程人类脱铁铁蛋白的评估和优化:用于靶向药物输送和细胞内货物释放的蛋白质纳米笼
- 批准号:
BB/Y008200/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
NSFGEO-NERC: The Cracking of a Craton: Understanding Volatile Release during Continental Breakup
NSFGEO-NERC:克拉通的破裂:了解大陆破裂期间的挥发物释放
- 批准号:
NE/Z000017/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Catalytic Enantioselective Strain Release For The Synthesis Of Chiral Cycloalkanes
催化对映选择性应变释放用于合成手性环烷烃
- 批准号:
EP/Y02687X/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Fellowship
RUI: Role of Crystallinity and Morphology in Degradation and Drug Release of PEO-b-PCL Films
RUI:结晶度和形态在 PEO-b-PCL 薄膜降解和药物释放中的作用
- 批准号:
2406566 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant