BRIGE: Biomedical Applications of High Internal Phase Emulsions
BRIGE:高内相乳液的生物医学应用
基本信息
- 批准号:0926824
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0926824Cosgriff-HernandezThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)."PROJECT SUMMARY: We propose to generate high porosity bone scaffolds that are bothbiodegradable and injectable using high internal phase emulsions (HIPEs). Current fabrication techniques can be used to generate either a porous scaffold or an injectable scaffold. A highly porous scaffold that is injectable and cures in situ to suitable mechanical strength will represent a significant advancement in orthopaedic tissue engineering. This innovative fabrication platform will provide exceptional control over the architecture, which can be utilized to tune scaffold properties to enhance tissue regeneration. A limited number of studies have demonstrated the potential of polyHIPEs as scaffolds; however, the synthetic routes used in these studies limited the biocompatibility, biodegradability, or injectability of the candidate scaffolds. We propose to use an entirely new synthetic design based on addition reactions of multifunctional polyesters to harness the full potential of the polyHIPE scaffolds. Furthermore, we will utilize molecular hydrophobicity prediction software to identify relationships between compositional chemistry and scaffold architecture that will enable rationale design of polyHIPE scaffolds.Intellectual Merit: These studies will provide the proof-of-concept and design strategies for theapplication of emulsion templating in a wide range of biomedical applications. Technical: Completion of the proposed Tasks will generate high porosity scaffolds that are both biodegradable and injectable using emulsion templating. A highly porous scaffold that is injectable and cures in situ to suitable mechanical strength will represent a significant advancement in orthopaedic tissue engineering. Fundamental: Systematic study of these scaffolds will delineate the individual effects of molecular hydrophobicity, viscosity, and surfactant on HIPE formation and architecture of the resulting foam. The ability to predict foam architecture based on compositional and processing variables is critical in rational design of tissue engineering scaffolds. On a grander scale, the predictive models and methodology developed in this research are applicable to other clinical specialties in which high porosity foams show promise in improving patient care (e.g. wound dressings, endovascular intervention, fixation devices).Broader Impacts: Broad educational and outreach activities will be woven through every level of this innovative research program to address the national need to increase the participation of underrepresented groups in the scientific and engineering workforce. This integrated educational and outreach platform will focus on strategies that enhance recruitment, retention and promotion of women and minorities in engineering. Collaborative activities with a minority serving institution in conjunction with continued involvement with the Texas A&M LSAMP program will create new opportunities for underrepresented groups to participate in innovative research. The proposed studies will enable technical and fundamental advances in tissue engineering while training these students for engineering careers and instilling a commitment to diversity. The research program will be used to foster critical thinking and equip students with state-of-the-art experimental skills in chemistry, polymer science and engineering. In addition,reports, theses, manuscript drafting, presentations at weekly group meetings, and opportunities to present at regional and national meetings will foster effective communication skills. Finally, the principles and results of this research will be incorporated into courses taught by the PI to educate students and encourage interest in biomedical research.
0926824 Cosgriff-Hernanovich该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。“项目概要:我们建议使用高内相乳液(HIPES)制备高孔隙率的骨支架,这些支架既可生物降解又可注射。目前的制造技术可用于产生多孔支架或可注射支架。一种高度多孔的支架,可注射和原位固化到适当的机械强度,将代表骨科组织工程的重大进展。这种创新的制造平台将提供对架构的特殊控制,可用于调整支架特性以增强组织再生。有限数量的研究已经证明了聚HIPE作为支架的潜力;然而,这些研究中使用的合成路线限制了候选支架的生物相容性、生物降解性或注射性。我们建议使用一个全新的合成设计的基础上加成反应的多官能聚酯利用的聚HIPE支架的全部潜力。此外,我们将利用分子疏水性预测软件来确定组成化学和支架结构之间的关系,这将使polyHIPE scaffolds.Intellectual Merit的合理设计:这些研究将提供概念验证和设计策略的应用程序的乳液模板在广泛的生物医学应用。技术支持:完成拟议的任务将产生高孔隙率支架,既可生物降解和注射使用乳液模板。一种高度多孔的支架,可注射和原位固化到适当的机械强度,将代表骨科组织工程的重大进展。基础:这些支架的系统研究将描绘分子疏水性,粘度和表面活性剂对HIPE形成和所得泡沫的结构的个别影响。基于成分和加工变量预测泡沫结构的能力在组织工程支架的合理设计中至关重要。在更大的范围内,本研究中开发的预测模型和方法适用于其他临床专业,其中高孔隙率泡沫显示出改善患者护理的前景(例如伤口敷料、血管内介入、固定器械)。广泛的教育和推广活动将贯穿于这一创新研究计划的各个层面,以满足国家增加参与的需要。科学和工程劳动力中代表性不足的群体。这一综合教育和外联平台将侧重于加强工程领域妇女和少数族裔的征聘、保留和晋升的战略。与少数民族服务机构的合作活动,再加上继续参与得克萨斯州A M LSAMP计划,将为代表性不足的群体创造新的机会,参与创新研究。拟议的研究将使组织工程的技术和基本进步,同时培训这些学生的工程职业生涯,并灌输对多样性的承诺。该研究项目将用于培养批判性思维,并为学生提供化学、高分子科学和工程领域最先进的实验技能。此外,报告、论文、手稿起草、在每周小组会议上的发言以及在区域和国家会议上发言的机会将培养有效的沟通技能。最后,这项研究的原则和结果将被纳入PI教授的课程,以教育学生并鼓励对生物医学研究的兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth Cosgriff-Hernandez其他文献
PO-04-106 USING CONDUCTIVE HYDROGELS TO SHAPE RF ABLATION LESIONS
PO-04-106:使用导电水凝胶塑造射频消融病灶
- DOI:
10.1016/j.hrthm.2025.03.1240 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:5.700
- 作者:
Lukas M. Jaworski;Drew Bernard;Mathews Medayil John;Derek Bashe;Fei Xu;Meng-Hsuan Sung;Allison Post;Elizabeth Cosgriff-Hernandez;Mehdi Razavi - 通讯作者:
Mehdi Razavi
PO-709-08 CONDUCTIVE HYDROGELS FOR RF ENERGY DELIVERY: A NOVEL APPLICATION
- DOI:
10.1016/j.hrthm.2022.03.1115 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Allison Post;Mathews Medayil John;Skylar Buchan;Drew Bernard;Gabriel Rodriguez-Rivera;Abdi Rasekh;Elizabeth Cosgriff-Hernandez;Mehdi Razavi - 通讯作者:
Mehdi Razavi
MP-483494-002 ELIMINATING STEAM POPS AND IMPROVING LESION SAFETY IN ATRIAL ABLATION WITH CONDUCTIVE HYDROGELS
MP-483494-002 利用导电水凝胶消除心房消融中的蒸汽爆鸣声并提高病变安全性
- DOI:
10.1016/j.hrthm.2024.03.434 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Lukas M. Jaworski;Drew Bernard;Allison Post;Elizabeth Cosgriff-Hernandez;Mehdi Razavi - 通讯作者:
Mehdi Razavi
Advanced manufacturing of coil-reinforced multilayer vascular grafts to optimize biomechanical performance
线圈增强多层血管移植物的先进制造以优化生物力学性能
- DOI:
10.1016/j.actbio.2025.04.020 - 发表时间:
2025-05-15 - 期刊:
- 影响因子:9.600
- 作者:
Andrew Robinson;David Jiang;Abbey Nkansah;Juan S. Herrera Duran;Jonathan Leung;Madeline Laude;John Craig;Leopold Guo;Lucas Timmins;Elizabeth Cosgriff-Hernandez - 通讯作者:
Elizabeth Cosgriff-Hernandez
A Review of Integrin-Mediated Endothelial Cell Phenotype in the Design of Cardiovascular Devices
- DOI:
10.1007/s10439-018-02171-3 - 发表时间:
2018-11-28 - 期刊:
- 影响因子:5.400
- 作者:
Allison Post;Ellen Wang;Elizabeth Cosgriff-Hernandez - 通讯作者:
Elizabeth Cosgriff-Hernandez
Elizabeth Cosgriff-Hernandez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth Cosgriff-Hernandez', 18)}}的其他基金
NSF/DMR-BSF: Nanoparticle-Stabilized PolyHIPEs that Promote Integrin-Mediated Osteogenesis
NSF/DMR-BSF:促进整合素介导的成骨的纳米颗粒稳定的 PolyHIPE
- 批准号:
1709328 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
NSF/DMR-BSF: Nanoparticle-Stabilized PolyHIPEs that Promote Integrin-Mediated Osteogenesis
NSF/DMR-BSF:促进整合素介导的成骨的纳米颗粒稳定的 PolyHIPE
- 批准号:
1822196 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Biomaterials Day at Texas A&M University
德克萨斯州生物材料日
- 批准号:
1117599 - 财政年份:2011
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Cell-Responsive Biomaterials as Tissue Engineering Scaffolds
作为组织工程支架的细胞响应生物材料
- 批准号:
0907067 - 财政年份:2009
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
相似海外基金
MetacMed: Acoustic and mechanical metamaterials for biomedical and energy harvesting applications
MetacMed:用于生物医学和能量收集应用的声学和机械超材料
- 批准号:
EP/Y034635/1 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Research Grant
CAREER: AI-Enabled Self-Healing and Trusted Wireless Transceivers for Biomedical Applications
职业:用于生物医学应用的人工智能自我修复和可信无线收发器
- 批准号:
2339162 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
DMS/NIGMS 1: Multilevel stochastic orthogonal subspace transformations for robust machine learning with applications to biomedical data and Alzheimer's disease subtyping
DMS/NIGMS 1:多级随机正交子空间变换,用于稳健的机器学习,应用于生物医学数据和阿尔茨海默病亚型分析
- 批准号:
2347698 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Developing an integrative approach to phenomics for industrial biomedical and environmental applications
开发用于工业生物医学和环境应用的表型组学综合方法
- 批准号:
MR/Y011724/1 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Fellowship
MetacMed: Acoustic and mechanical metamaterials for biomedical and energy harvesting applications
MetacMed:用于生物医学和能量收集应用的声学和机械超材料
- 批准号:
EP/Y036204/1 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Research Grant
Stimuli-responsive porphyrin-polymer systems for biomedical and sensing applications
用于生物医学和传感应用的刺激响应卟啉聚合物系统
- 批准号:
22KF0385 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
flIMAGIN3D_Doctoral Network for a Shared Excellence of Fluorescent Lifetime Imaging Microscopy in Biomedical Applications
flIMAGIN3D_生物医学应用中荧光寿命成像显微镜共享卓越的博士网络
- 批准号:
EP/X027988/1 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Research Grant
Constructing a large-scale biomedical knowledge graph using all PubMed abstracts and PMC full-text articles and its applications
利用所有PubMed摘要和PMC全文文章构建大规模生物医学知识图谱及其应用
- 批准号:
10648553 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Synthesis and characterisation of mesoporous phosphate-based glasses for biomedical applications
用于生物医学应用的介孔磷酸盐玻璃的合成和表征
- 批准号:
2872452 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Studentship
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2345048 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant