High-Dimensional Predictive Density Estimation

高维预测密度估计

基本信息

项目摘要

This research concerns the development of a new methodology for predictive analysis, which extracts information from historical and current data to predict future trends and behavior patterns. The Bayesian approach is appealing for this problem because it provides a complete predictive density that assigns probabilities to every possible outcome, and it naturally incorporates the uncertainty inherent in the parameter estimation and model selection processes. The prior specification for Bayesian predictive procedures, however, becomes challenging as the number of potential predictors grows, an all too common problem as massive data sets are increasingly prevalent in many scientific areas. In this project, the PI investigates the use of Bayesian techniques for predictive density estimation and their frequentist properties, and then exploits those properties to construct new families of priors that have desirable risk properties, adapt to unknown data structures and also permit tractable computation for large and complex data sets. These priors are "minimally informative" in the sense that they allow input of subjective information through the choice of prior center, yet utilize this information in a very robust fashion. The resulting predictive estimators effectively combine information from different dimensions and therefore improve overall prediction performance. Applications in financial and social problems will be developed using the new methodology.Extracting information from massive data sets and exploiting it to make predictions of future uncertain events are fundamental problems in both statistics and the sciences. The proposed research provides not only powerful theoretical tools, but also easily-implementable computing strategies for predictive analysis. It can help researchers in various fields to better identify risks and opportunities, and thus to optimize their decision making. The methodological developments are motivated by a portfolio allocation problem in finance and a missing data imputation problem in the social sciences. The proposed procedures are applicable to many other scientific and technical areas, such as genomics, climatology, medical sciences and public health, where large data sets are collected and accurate predictive analysis is desirable. For example, in health care service studies, predicting people's future health care costs is an important topic given a high concentration of health care expenditures among a relatively small percentage of the population. Using the proposed methods, one may better exploit information in vast medical and insurance databases to identify the individuals with high health risks and to predict their future medical costs. To facilitate the use of these new methods, the PI will implement the procedures and algorithms in R or Matlab, and make this software available to the public along with the associated research reports.
这项研究涉及一种新的预测分析方法的开发,它从历史和当前数据中提取信息,以预测未来的趋势和行为模式。贝叶斯方法对这个问题很有吸引力,因为它提供了一个完整的预测密度,为每个可能的结果分配概率,而且它自然地包含了参数估计和模型选择过程中固有的不确定性。然而,随着潜在预测者的数量增加,贝叶斯预测过程的先前规范变得具有挑战性,这是一个非常常见的问题,因为海量数据集在许多科学领域日益普遍。在这个项目中,PI研究了使用贝叶斯技术进行预测密度估计及其频率特性,然后利用这些特性来构造新的先验族,这些先验族具有期望的风险特性,适应未知的数据结构,并允许对大型和复杂的数据集进行易于处理的计算。这些先验是“最小信息量”,因为它们允许通过选择先验中心来输入主观信息,但以非常健壮的方式利用这些信息。由此产生的预测估计器有效地组合了来自不同维度的信息,从而提高了整体预测性能。从海量数据集中提取信息,并利用它来预测未来的不确定事件,这是统计学和科学的基本问题。该研究不仅为预测分析提供了强大的理论工具,而且为预测分析提供了易于实现的计算策略。它可以帮助各个领域的研究人员更好地识别风险和机会,从而优化他们的决策。方法论的发展是由金融领域的投资组合分配问题和社会科学领域的数据缺失问题推动的。拟议的程序适用于许多其他科学和技术领域,如基因组学、气候学、医学和公共卫生,这些领域收集了大量数据,需要进行准确的预测分析。例如,在卫生保健服务研究中,由于卫生保健支出在相对较小的人口比例中高度集中,预测人们未来的卫生保健成本是一个重要的主题。使用所提出的方法,人们可以更好地利用庞大的医疗和保险数据库中的信息来识别具有高健康风险的个人,并预测他们未来的医疗成本。为了方便这些新方法的使用,PI将在R或MatLab中实现程序和算法,并将该软件与相关的研究报告一起向公众开放。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xinyi Xu其他文献

Preferences for end-of-life care: A cross-sectional survey of Chinese frail nursing home residents.
对临终关怀的偏好:对中国体弱疗养院居民的横断面调查。
  • DOI:
    10.1111/jocn.16483
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Xinyi Xu;P. Chau;Denise Shuk Ting Cheung;Murphy Ho;Chia
  • 通讯作者:
    Chia
A new thermal conductivity model for nanorod-based nanofluids
基于纳米棒的纳米流体的新热导率模型
  • DOI:
    10.1016/j.applthermaleng.2016.11.183
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Liu Yang;Xinyi Xu;Weixue Jiang;Kai Du
  • 通讯作者:
    Kai Du
A Literature Review on the Research and Development of Chinese and Western Re-translation
中西重译研究与进展文献综述
Small area estimation strategies for large population surveys: a comparison of design and model-based methods
大规模人口调查的小区域估计策略:设计方法和基于模型的方法的比较
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhaonan Li;Xinyi Xu;Bo Lu
  • 通讯作者:
    Bo Lu
Covariance Decompositions for Accurate Computation in Bayesian Scale-Usage Models
贝叶斯尺度使用模型中精确计算的协方差分解

Xinyi Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xinyi Xu', 18)}}的其他基金

Robust Bayesian Semiparametric Inference of Heterogeneous Causal Effects in Observational Studies
观察研究中异质因果效应的鲁棒贝叶斯半参数推理
  • 批准号:
    2015552
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Robust Bayesian Analysis with Model Uncertainty for Massive Datasets
针对海量数据集的具有模型不确定性的鲁棒贝叶斯分析
  • 批准号:
    1613110
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

SG: Density dependence and disease dynamics: moving towards a predictive framework
SG:密度依赖性和疾病动态:迈向预测框架
  • 批准号:
    2211287
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Efficient predictive density estimation
高效的预测密度估计
  • 批准号:
    RGPIN-2017-05435
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Efficient predictive density estimation
高效的预测密度估计
  • 批准号:
    RGPIN-2017-05435
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Efficient predictive density estimation
高效的预测密度估计
  • 批准号:
    RGPIN-2017-05435
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Alcohol-related Social Network Density and Alcohol Misuse: Examination of Clinical Utility and Predictive Validity
与酒精相关的社交网络密度和酒精滥用:临床实用性和预测有效性的检验
  • 批准号:
    439610
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship Programs
Pure Density Functionals for Efficient, Predictive Simulations
用于高效预测模拟的纯密度泛函
  • 批准号:
    1912618
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
NSF/DMR-BSF: Density Functionals for Predictive Excited-State Calculations of Solids (NSF-BSF Application)
NSF/DMR-BSF:用于预测固体激发态计算的密度泛函(NSF-BSF 应用)
  • 批准号:
    2015991
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Efficient predictive density estimation
高效的预测密度估计
  • 批准号:
    RGPIN-2017-05435
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Efficient predictive density estimation
高效的预测密度估计
  • 批准号:
    RGPIN-2017-05435
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
NSF/DMR-BSF: Density Functionals for Predictive Excited-State Calculations of Solids
NSF/DMR-BSF:用于固体预测激发态计算的密度泛函
  • 批准号:
    1708892
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了