NSF/DMR-BSF: Density Functionals for Predictive Excited-State Calculations of Solids (NSF-BSF Application)

NSF/DMR-BSF:用于预测固体激发态计算的密度泛函(NSF-BSF 应用)

基本信息

  • 批准号:
    2015991
  • 负责人:
  • 金额:
    $ 33.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-12-01 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis award supports theoretical and computational research, and education to advance computational methods for predicting the properties of materials from fundamental scientific principles. The discovery and development of new materials for optoelectronic applications is significantly limited by a detailed understanding of how materials harvest light, transduce energy, and transport charge - all phenomena involving electronic excited states where the configuration of electrons leads to a higher energy than the lowest or ground state energy of the material. Existing computational methods are predictive for such processes, but they come at significant computational cost, and alternative approaches with similar accuracy would enable predictions for increasingly complex materials and for adapting such methods for materials discovery and design. This research project lays important groundwork toward the development of more efficient predictive theoretical frameworks that are complimentary to more computationally costly existing methods for electronic excited states in real materials. Central to this effort is mentoring of next-generation computational materials theorists at all age levels, with focus on active recruitment and promotion of women and other underrepresented-minority undergraduate and graduate students; and outreach through tours of local research facilities for undergraduate, elementary, and middle-school students – as well as educators – in the Bay area and beyond.TECHNICAL SUMMARYThis award supports theoretical and computational research, and education to advance computational methods for predicting the properties of materials. The electronic band structure is a fundamental property of crystalline matter. It serves as the basis for understanding charge transport properties of bulk materials. Moreover, it is a prerequisite for understanding optical properties of materials and for rationalizing the results of spectroscopic measurements. In materials and condensed matter physics, the formalism of choice for quantitative determination of the band structure has long been many-body perturbation theory (MBPT). This formalism has yielded excellent electronic structure predictions for many different classes of metals, semiconductors, and insulators. However, these predictions come at significant computational cost, and the ability to extract band structures from density functional theory (DFT), based on the single-electron energies and orbitals obtained from the solution of the Kohn-Sham equation, could alleviate this cost. This project involves a binational theoretical and computational collaboration to develop a robust framework for the first principles computational prediction of the quasiparticle band gaps, band structures, and optical spectra of complex solid-state materials with greater accuracy and efficiency than existing methodologies, by combining optimally-tuned range separated hybrid (OTRSH) density functionals with many-body perturbation theory. The PIs’ work has shown that OTRSH functionals lead to band structures and optical spectra for a broad class of molecular crystals and a set of group IV and III–V semiconductors and insulators, with the accuracy of leading-edge ab initio GW and GW-BSE approaches. Here, the PIs build on this success by advancing two important fronts simultaneously. First, the PIs will evaluate OTRSH as an effective starting point for GW and GW-BSE calculations for solids. Second, building on prior work, the PIs will explore routes to determine accurate DFT-OTRSH band structure and TDDFT-OTRSH optical properties without GW calculations. Once validated, the PIs will use OTRSH starting points to calculate the quasiparticle gap and band structure, as well as the linear absorption spectra, of an array of complex materials, including halide perovskites, important optoelectronic materials for which standard GW and GW-BSE methods have been demonstrated to be inadequate or inconsistent.The progress made thus far with OTRSH for band structure and optical spectra of solids is encouraging, as it suggests that it is in general possible to fix one parameter to the orientationally-averaged dielectric constant and then tune a single parameter – the range-separation parameter – to yield band structures and optical spectra in agreement with GW-BSE, partially or fully mitigating computational costs associated with MBPT. Given the quality of the OTRSH band structure with a single parameter, could OTRSH be an optimal starting point for GW and GW-BSE calculations of complex structurally and chemically heterogeneous systems? Additionally, it remains to be seen whether one can set this single parameter independent of GW-BSE calculations and experiment. Can it be predicted from materials properties in a computationally tractable manner, for isotropic and anisotropic materials alike? The aim of this project is to address these questions, and ultimately develop efficient approaches for understanding existing and predicting new excited-state phenomena in complex materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持理论和计算研究,以及教育,以推进从基本科学原理预测材料性质的计算方法。用于光电应用的新材料的发现和开发受到对材料如何收集光、光能和传输电荷的详细理解的显著限制-所有涉及电子激发态的现象,其中电子的配置导致比材料的最低或基态能量更高的能量。现有的计算方法是预测这样的过程,但他们在显着的计算成本,和具有类似的精度的替代方法将能够预测日益复杂的材料和适应这种方法的材料发现和设计。该研究项目为开发更有效的预测理论框架奠定了重要的基础,这些框架与真实的材料中电子激发态的计算成本更高的现有方法是互补的。这一努力的核心是指导所有年龄层的下一代计算材料理论家,重点是积极招聘和晋升妇女和其他代表性不足的少数民族本科生和研究生;通过对当地研究设施的图尔斯参观,和中学生-以及教育工作者-在海湾地区和超越。技术总结这个奖项支持理论和计算研究,和教育,以促进预测材料性能的计算方法。电子能带结构是晶体物质的基本性质。它是理解体材料电荷输运性质的基础。此外,它是理解材料的光学性质和合理化光谱测量结果的先决条件。在材料和凝聚态物理学中,用于定量测定能带结构的形式主义长期以来一直是多体微扰理论(MBPT)。这种形式主义为许多不同种类的金属、半导体和绝缘体提供了极好的电子结构预测。然而,这些预测的计算成本很高,而从密度泛函理论(DFT)中提取能带结构的能力,基于从Kohn-Sham方程的解获得的单电子能量和轨道,可以减轻这种成本。该项目涉及一个两国的理论和计算合作,以开发一个强大的框架,用于准粒子带隙,能带结构和复杂固态材料的光谱的第一原理计算预测,具有比现有方法更高的精度和效率,通过将最佳调谐范围分离混合(OTRSH)密度泛函与多体微扰理论相结合。PI的工作表明,OTRSH泛函导致了一大类分子晶体和一组IV族和III-V族半导体和绝缘体的能带结构和光谱,具有领先的从头算GW和GW-BSE方法的准确性。在这里,PI通过同时推进两个重要方面来建立这一成功。首先,PI将评估OTRSH作为固体GW和GW-BSE计算的有效起点。其次,在先前工作的基础上,PI将探索在没有GW计算的情况下确定准确的DFT-OTRSH能带结构和TDDFT-OTRSH光学特性的路线。一旦得到验证,PI将使用OTRSH起始点计算一系列复杂材料的准粒子带隙和能带结构,以及线性吸收光谱,包括卤化物钙钛矿,这是一种重要的光电材料,标准GW和GW-BSE方法已被证明是不充分或不一致的。迄今为止,OTRSH在固体能带结构和光谱方面取得的进展令人鼓舞,这表明,通常可以将一个参数固定到取向平均介电常数,然后调整单个参数--距离分离参数--以产生与GW-BSE一致的能带结构和光谱,部分或完全减轻与MBPT相关的计算成本。考虑到OTRSH能带结构的质量和单个参数,OTRSH是否可以成为复杂结构和化学非均匀系统的GW和GW-BSE计算的最佳起点?此外,是否可以独立于GW-BSE计算和实验来设置这个单一参数还有待观察。对于各向同性和各向异性材料,它能以计算上易于处理的方式从材料特性中预测出来吗?该项目的目的是解决这些问题,并最终开发出有效的方法来理解复杂材料中现有的和预测新的激发态现象。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimally tuned starting point for single-shot GW calculations of solids
  • DOI:
    10.1103/physrevmaterials.6.053802
  • 发表时间:
    2022-05-16
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Gant, Stephen E.;Haber, Jonah B.;Neaton, Jeffrey B.
  • 通讯作者:
    Neaton, Jeffrey B.
Band gaps of halide perovskites from a Wannier-localized optimally tuned screened range-separated hybrid functional
  • DOI:
    10.1103/physrevmaterials.6.104606
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Guy Ohad;Dahvyd Wing;Stephen E. Gant;A. Cohen;J. Haber;Francisca Sagredo;Marina R. Filip;J. Neaton;L. Kronik
  • 通讯作者:
    Guy Ohad;Dahvyd Wing;Stephen E. Gant;A. Cohen;J. Haber;Francisca Sagredo;Marina R. Filip;J. Neaton;L. Kronik
Time‐Dependent Density Functional Theory of Narrow Band Gap Semiconductors Using a Screened Range‐Separated Hybrid Functional
使用屏蔽范围的窄带隙半导体的时间相关密度泛函理论 - 分离混合泛函
  • DOI:
    10.1002/adts.202000220
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Wing, Dahvyd;Neaton, Jeffrey B.;Kronik, Leeor
  • 通讯作者:
    Kronik, Leeor
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Neaton其他文献

Jeffrey Neaton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Neaton', 18)}}的其他基金

NSF/DMR-BSF: Density Functionals for Predictive Excited-State Calculations of Solids
NSF/DMR-BSF:用于固体预测激发态计算的密度泛函
  • 批准号:
    1708892
  • 财政年份:
    2017
  • 资助金额:
    $ 33.43万
  • 项目类别:
    Standard Grant

相似国自然基金

Dlk1-Meg3印记控制区IG-DMR甲基化重编程介导父体咖啡因暴露所致子代骨质疏松症易感
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
泛素连接酶DDEL1/2/3介导水杨酸羟化酶DMR6降解调控植物免疫的分子机制
  • 批准号:
    32300255
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PpbHLH14-DMR6-like响应MeJA诱导增强梨炭疽病抗性的分子机制
  • 批准号:
    32302484
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
circRNA-DMR介导m6A去甲基化酶ALKBH5低表达并促进糖尿病视网膜小胶质细胞M1型极化的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Dlk1-Dio3印记区域内母本甲基化差异甲基化区Meg8-DMR的功能研究
  • 批准号:
    31771601
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
猪RTL1基因DMR甲基化状态对其印记状态及表达水平的调控
  • 批准号:
    31201791
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
雌激素信号介导Igf2-H19 DMR低甲基化在p,p'-DDE致雄性生殖毒性中的作用
  • 批准号:
    81102161
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF/DMR-BSF: Artificial Semiconductor Nanocrystal Molecules for Charge Carrier Separation
NSF/DMR-BSF:用于电荷载流子分离的人造半导体纳米晶体分子
  • 批准号:
    2026741
  • 财政年份:
    2021
  • 资助金额:
    $ 33.43万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Theory of Quantum Materials
NSF/DMR-BSF:量子材料理论
  • 批准号:
    2000987
  • 财政年份:
    2020
  • 资助金额:
    $ 33.43万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Synergistic biopolymer co-assembly regulating the emergence of translation and replication in synthetic networks
NSF/DMR-BSF:协同生物聚合物共组装调节合成网络中翻译和复制的出现
  • 批准号:
    2004846
  • 财政年份:
    2020
  • 资助金额:
    $ 33.43万
  • 项目类别:
    Continuing Grant
RUI: NSF/DMR-BSF: Nonequilibrium Quantum Matter: Timescales and Self-Averaging
RUI:NSF/DMR-BSF:非平衡量子物质:时间尺度和自平均
  • 批准号:
    1936006
  • 财政年份:
    2020
  • 资助金额:
    $ 33.43万
  • 项目类别:
    Continuing Grant
NSF/DMR-BSF: Electronic Correlations and Disorder in Berry materials
NSF/DMR-BSF:浆果材料中的电子相关性和无序性
  • 批准号:
    2002795
  • 财政年份:
    2020
  • 资助金额:
    $ 33.43万
  • 项目类别:
    Continuing Grant
NSF/DMR-BSF: Liquid Crystals as a Paradigm for Chirality and Topological Defects
NSF/DMR-BSF:液晶作为手性和拓扑缺陷的范例
  • 批准号:
    1901797
  • 财政年份:
    2019
  • 资助金额:
    $ 33.43万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Quantum Transport in a Helical One-Dimensional System
NSF/DMR-BSF:螺旋一维系统中的量子传输
  • 批准号:
    1904986
  • 财政年份:
    2019
  • 资助金额:
    $ 33.43万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Understanding Electro-Chemo-Mechanical Processes at the Atomic Level
NSF/DMR-BSF:了解原子水平上的电化学机械过程
  • 批准号:
    1911592
  • 财政年份:
    2019
  • 资助金额:
    $ 33.43万
  • 项目类别:
    Continuing Grant
NSF/DMR-BSF: Quantum transport of charge and heat in correlated electron systems
NSF/DMR-BSF:相关电子系统中电荷和热量的量子传输
  • 批准号:
    1742752
  • 财政年份:
    2018
  • 资助金额:
    $ 33.43万
  • 项目类别:
    Continuing Grant
NSF/DMR-BSF: Quantum Materials from Geometric and Dimensionality Design
NSF/DMR-BSF:来自几何和维度设计的量子材料
  • 批准号:
    1724791
  • 财政年份:
    2018
  • 资助金额:
    $ 33.43万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了