NSF/DMR-BSF: Density Functionals for Predictive Excited-State Calculations of Solids
NSF/DMR-BSF:用于固体预测激发态计算的密度泛函
基本信息
- 批准号:1708892
- 负责人:
- 金额:$ 30.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThe National Science Foundation and the United States -- Israel Binational Science Foundation (BSF) jointly support this collaboration between a US-based researcher and an Israel-based researcher. The NSF Division of Materials Research funds this award, which supports research and education on the development of advanced computational methods for the simulation and prediction of materials properties.The discovery and development of new materials for converting sunlight into electricity is significantly limited by not having detailed understanding of how materials harvest light, transduce energy, and transport electric charge. All these phenomena are a challenge to model computationally as they involve excited electronic states. There exist computational methods with predictive power for such processes, but they come at significant computational cost. Developing more computationally efficient alternative approaches that offer similar accuracy would enable predictions for increasingly complex materials and would facilitate adapting such methods for materials discovery and design. This research project lays important groundwork toward the development of such efficient predictive approaches for real materials. Central to the proposed effort is outreach to and mentoring of next-generation computational materials theorists at all age levels, augmented by targeted recruitment of women and other underrepresented-minority undergraduate and graduate students. The PI will also organize tours of local research facilities for undergraduate, elementary, and middle-school students - as well as educators - in the Bay area and beyond. The US-based graduate students will travel to Israel to carry out research at the Israeli PI's group.TECHNICAL SUMMARYThe National Science Foundation and the United States -- Israel Binational Science Foundation (BSF) jointly support this collaboration between a US-based researcher and an Israel-based researcher. The NSF Division of Materials Research funds this award, which supports research and education on the development of advanced computational methods for the simulation and prediction of materials properties.In materials and condensed matter physics, the formalism of choice for quantitative determination of the band structure has long been many-body perturbation theory. This formalism has yielded excellent electronic structure predictions for many different classes of metals, semiconductors, and insulators. However, these predictions come at significant computational cost; extracting band structures from density functional theory (DFT), based on the single-electron energies and orbitals obtained from the solution of the Kohn-Sham equation, could alleviate this cost. The project involves a binational theoretical and computational collaboration to develop a new class of density functionals - optimally tuned range-separated hybrid (OTRSH) functionals - capable of predicting accurate quasiparticle band gaps and band structures, and optical spectra, including electron-hole interactions, for a range of complex solid-state materials, with greater computational efficiency than existing approaches. Using a benchmark set of well-studied materials, the team will: i) determine range-separation parameters that lead to the best match between OTRSH and the leading-edge excited-state method for each of these compounds; ii) develop the physics of the range-separation parameters; and iii) advance the OTRSH approach. The research team will then apply the OTRSH approach to a range of complex systems of contemporary interest, including transition metal oxides, Dirac materials, halide perovskites, and two-dimensional materials. The research activity will also address several open questions systematically, and ultimately develop an efficient DFT approach for understanding existing and predicting new excited-state phenomena in complex materials.Central to the proposed effort is outreach to and mentoring of next-generation computational materials theorists at all age levels, augmented by targeted recruitment of women and other underrepresented-minority undergraduate and graduate students. The PI will also organize tours of local research facilities for undergraduate, elementary, and middle-school students - as well as educators - in the Bay area and beyond. The US-based graduate students will travel to Israel to carry out research at the Israeli PI's group.
非技术摘要国家科学基金会和美国-以色列两国科学基金会(BSF)共同支持美国研究人员和以色列研究人员之间的这项合作。该奖项由美国国家科学基金会材料研究部资助,旨在支持开发用于模拟和预测材料特性的先进计算方法的研究和教育。由于没有详细了解材料如何收集光、吸收能量和传输电荷,将太阳光转化为电能的新材料的发现和开发受到很大限制。所有这些现象都是一个挑战,以计算模型,因为它们涉及激发电子态。存在对此类过程具有预测能力的计算方法,但它们具有显著的计算成本。开发计算效率更高的替代方法,提供类似的准确性,将使预测越来越复杂的材料,并将有助于适应这种方法的材料发现和设计。这项研究项目奠定了重要的基础,对发展这种有效的预测方法,为真实的材料。拟议工作的核心是在所有年龄段推广和指导下一代计算材料理论家,并有针对性地招募女性和其他代表性不足的少数民族本科生和研究生。PI还将为湾区及其他地区的本科生、小学生和中学生以及教育工作者组织当地研究设施的图尔斯之旅。美国的研究生将前往以色列,在以色列PI的小组进行研究。技术总结美国国家科学基金会和美国-以色列两国科学基金会(BSF)共同支持美国研究人员和以色列研究人员之间的合作。该奖项由美国国家科学基金会(NSF)材料研究部资助,旨在支持开发用于模拟和预测材料性质的先进计算方法的研究和教育。在材料和凝聚态物理学中,长期以来,多体微扰理论一直是定量测定能带结构的首选形式。这种形式主义为许多不同种类的金属、半导体和绝缘体提供了极好的电子结构预测。然而,这些预测的计算成本很高;从密度泛函理论(DFT)中提取能带结构,基于从Kohn-Sham方程的解获得的单电子能量和轨道,可以减轻这种成本。该项目涉及两国的理论和计算合作,以开发一类新的密度泛函-最佳调谐范围分离混合(OTRSH)泛函-能够预测准确的准粒子带隙和带结构,以及光谱,包括电子-空穴相互作用,对于一系列复杂的固态材料,具有比现有方法更高的计算效率。使用一组经过充分研究的基准材料,该团队将:i)确定范围分离参数,这些参数导致OTRSH与这些化合物中每一种的前沿激发态方法之间的最佳匹配; ii)开发范围分离参数的物理学; iii)推进OTRSH方法。然后,研究小组将OTRSH方法应用于当代感兴趣的一系列复杂系统,包括过渡金属氧化物,Dirac材料,卤化物钙钛矿和二维材料。该研究活动还将系统地解决几个悬而未决的问题,并最终开发出一种有效的DFT方法,用于理解复杂材料中现有的激发态现象并预测新的激发态现象。拟议工作的核心是在所有年龄段推广和指导下一代计算材料理论家,并有针对性地招募女性和其他代表性不足的少数民族本科生和研究生。PI还将为湾区及其他地区的本科生、小学生和中学生以及教育工作者组织当地研究设施的图尔斯之旅。美国的研究生将前往以色列,在以色列PI的小组进行研究。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Neaton其他文献
Jeffrey Neaton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Neaton', 18)}}的其他基金
NSF/DMR-BSF: Density Functionals for Predictive Excited-State Calculations of Solids (NSF-BSF Application)
NSF/DMR-BSF:用于预测固体激发态计算的密度泛函(NSF-BSF 应用)
- 批准号:
2015991 - 财政年份:2020
- 资助金额:
$ 30.19万 - 项目类别:
Standard Grant
相似国自然基金
Dlk1-Meg3印记控制区IG-DMR甲基化重编程介导父体咖啡因暴露所致子代骨质疏松症易感
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
泛素连接酶DDEL1/2/3介导水杨酸羟化酶DMR6降解调控植物免疫的分子机制
- 批准号:32300255
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PpbHLH14-DMR6-like响应MeJA诱导增强梨炭疽病抗性的分子机制
- 批准号:32302484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
circRNA-DMR介导m6A去甲基化酶ALKBH5低表达并促进糖尿病视网膜小胶质细胞M1型极化的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Dlk1-Dio3印记区域内母本甲基化差异甲基化区Meg8-DMR的功能研究
- 批准号:31771601
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
猪RTL1基因DMR甲基化状态对其印记状态及表达水平的调控
- 批准号:31201791
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
雌激素信号介导Igf2-H19 DMR低甲基化在p,p'-DDE致雄性生殖毒性中的作用
- 批准号:81102161
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
NSF/DMR-BSF: Artificial Semiconductor Nanocrystal Molecules for Charge Carrier Separation
NSF/DMR-BSF:用于电荷载流子分离的人造半导体纳米晶体分子
- 批准号:
2026741 - 财政年份:2021
- 资助金额:
$ 30.19万 - 项目类别:
Standard Grant
NSF/DMR-BSF: Theory of Quantum Materials
NSF/DMR-BSF:量子材料理论
- 批准号:
2000987 - 财政年份:2020
- 资助金额:
$ 30.19万 - 项目类别:
Standard Grant
NSF/DMR-BSF: Synergistic biopolymer co-assembly regulating the emergence of translation and replication in synthetic networks
NSF/DMR-BSF:协同生物聚合物共组装调节合成网络中翻译和复制的出现
- 批准号:
2004846 - 财政年份:2020
- 资助金额:
$ 30.19万 - 项目类别:
Continuing Grant
RUI: NSF/DMR-BSF: Nonequilibrium Quantum Matter: Timescales and Self-Averaging
RUI:NSF/DMR-BSF:非平衡量子物质:时间尺度和自平均
- 批准号:
1936006 - 财政年份:2020
- 资助金额:
$ 30.19万 - 项目类别:
Continuing Grant
NSF/DMR-BSF: Electronic Correlations and Disorder in Berry materials
NSF/DMR-BSF:浆果材料中的电子相关性和无序性
- 批准号:
2002795 - 财政年份:2020
- 资助金额:
$ 30.19万 - 项目类别:
Continuing Grant
NSF/DMR-BSF: Density Functionals for Predictive Excited-State Calculations of Solids (NSF-BSF Application)
NSF/DMR-BSF:用于预测固体激发态计算的密度泛函(NSF-BSF 应用)
- 批准号:
2015991 - 财政年份:2020
- 资助金额:
$ 30.19万 - 项目类别:
Standard Grant
NSF/DMR-BSF: Quantum Transport in a Helical One-Dimensional System
NSF/DMR-BSF:螺旋一维系统中的量子传输
- 批准号:
1904986 - 财政年份:2019
- 资助金额:
$ 30.19万 - 项目类别:
Standard Grant
NSF/DMR-BSF: Liquid Crystals as a Paradigm for Chirality and Topological Defects
NSF/DMR-BSF:液晶作为手性和拓扑缺陷的范例
- 批准号:
1901797 - 财政年份:2019
- 资助金额:
$ 30.19万 - 项目类别:
Standard Grant
NSF/DMR-BSF: Understanding Electro-Chemo-Mechanical Processes at the Atomic Level
NSF/DMR-BSF:了解原子水平上的电化学机械过程
- 批准号:
1911592 - 财政年份:2019
- 资助金额:
$ 30.19万 - 项目类别:
Continuing Grant
NSF/DMR-BSF: Quantum transport of charge and heat in correlated electron systems
NSF/DMR-BSF:相关电子系统中电荷和热量的量子传输
- 批准号:
1742752 - 财政年份:2018
- 资助金额:
$ 30.19万 - 项目类别:
Continuing Grant