Collaborative Research: Mechanics and Microrheology of Biomimetic Materials
合作研究:仿生材料的力学和微观流变学
基本信息
- 批准号:0907470
- 负责人:
- 金额:$ 30.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal:0907212/0907470 PI Name:Levine, Alexander/Dennin, MichaelProposal Title: Collaborative Research: Mechanics and Microrheology of Biomimetic Materials Institution: University of California-Los Angeles/University of California-IrvineThis award by the Biomaterials program in the Division of Materials Research in support of the collaborative efforts by University of California Los Angeles and University of California Irvine is to study the interaction between the nonequilibrium dynamics of molecular motors and the elastic nonlinearities of filamentous actin (F-actin) and determine the collective mechanical properties of the network, with coordinated experimental/theoretical approaches to address each of these challenges. The cytoskeleton of living cells is built primarily from cross-linked F-actin that, in living cells, is generically tensed by molecular motors such as myosin. The mechanical properties of this filament network have been shown to have a complex dependence on the state of activity of these molecular motors, and depend on a combination of the mechanics of the individual filaments, their network structure, and the non-equilibrium steady-state of the network. Understanding in detail how the mechanics of this network can be controlled by its internal stress state (imposed by the endogenous molecular motors) will enable us to better understand how cells control their mechanics and morphology, develop an understanding how cells sense and exert forces on their surroundings. To date, this field has focused on relating the equilibrium collective (non-)linear response properties of a material to the molecular structure of its constituents. With this award, F-actin networks associated with the air/water interface of a Langmuir monolayer will be studied. These 2D networks will then be tensed by molecular motors, and studied using both macro-and microrheology to elucidate the underlying relationship of network architecture (observed through fluorescent labeling of some of the filaments) and non-equilibrium stress state to its collective mechanics. The (quasi-) two-dimensional nature of the network allows for the direct observation of the local network structure, strain state, and provides a way to rapid in situ chemical modification of the system. Experiments on these biopolymer networks could provide insight about the active control of the nonequilibrium steady-state of biopolymer networks that allow the creation of a gel having reversibly tunable mechanical properties. Understanding this prototypical cytoskeletal biopolymer network may allow the development of novel biomimetic active materials with addressable mechanics. Teaching and training of graduate and undergraduate students in experimental and theoretical aspects of biophysics of soft materials, and developing a web site for the interpretation of microrheology are other parts of this award. Human cells are pervaded by a stiff biopolymer network that acts, much like the skeleton of our bodies, to maintain cellular shape and to allow the cell to exert forces on its environment through the action of molecular motors acting on this cytoskeleton. Recent advances have made it possible to deconstruct and then rebuild the principal structural elements of the cytoskeleton in the laboratory. With this award, the mechanical properties of this biopolymer network are measured, and will explore the relationship between network structure, molecular motor activity and large scale mechanics in these protein filament networks. The principal importance of this work is that these studies would provide better understanding how cells use molecular motors to exert forces on their environment and how the activity of these motors can modify the stiffness of the network in a reversible way. This understanding will help to elucidate fundamental design principles by which one may build artificial active materials that use nanomachines (i.e. molecular motors) to actively control their mechanical properties. Students, both graduate and undergraduate, will be trained in research activities that are related to biopolymer networks and their reversibly tunable mechanical properties.
提案:0907212/0907470主要研究者姓名:Levine,亚历山大/Dennin,Michael提案标题:合作研究:仿生材料的力学和微观流变学机构:加州大学洛杉矶分校/加州大学-Irvine该奖项由材料研究部的生物材料计划授予,以支持加州洛杉矶大学和加州欧文大学的合作努力,旨在研究分子非平衡动力学之间的相互作用。马达和丝状肌动蛋白(F-肌动蛋白)的弹性非线性,并确定网络的集体机械性能,与协调的实验/理论方法来解决这些挑战。活细胞的细胞骨架主要由交联的F-肌动蛋白构建,在活细胞中,该肌动蛋白通常由肌球蛋白等分子马达拉紧。这种细丝网络的机械性质已经被证明对这些分子马达的活动状态具有复杂的依赖性,并且取决于单个细丝的力学、它们的网络结构和网络的非平衡稳态的组合。详细了解这个网络的机制如何通过其内部应力状态(由内源性分子马达施加)来控制,将使我们能够更好地了解细胞如何控制它们的机制和形态,了解细胞如何感知并对其周围环境施加力。迄今为止,该领域已经集中于将材料的平衡集体(非)线性响应性质与其组分的分子结构相关联。有了这个奖项,F-肌动蛋白网络与空气/水界面的朗缪尔单层将进行研究。然后,这些2D网络将被分子马达拉紧,并使用宏观和微观流变学进行研究,以阐明网络结构(通过荧光标记某些细丝观察到)和非平衡应力状态与其集体力学的潜在关系。网络的(准)二维性质允许直接观察局部网络结构、应变状态,并提供了一种对系统进行快速原位化学修饰的方法。这些生物聚合物网络上的实验可以提供有关生物聚合物网络的非平衡稳态的主动控制的见解,该生物聚合物网络允许创建具有可逆可调的机械性能的凝胶。了解这种原型细胞骨架生物聚合物网络可能允许开发具有可寻址力学的新型仿生活性材料。该奖项的其他部分是对研究生和本科生进行软材料生物物理学实验和理论方面的教学和培训,以及开发一个解释微观流变学的网站。人类细胞中遍布着一种坚硬的生物聚合物网络,这种网络的作用就像我们身体的骨架一样,可以保持细胞的形状,并允许细胞通过作用于细胞骨架的分子马达的作用对其环境施加力。最近的进展使得在实验室中解构然后重建细胞骨架的主要结构元件成为可能。有了这个奖项,这种生物聚合物网络的机械性能被测量,并将探索网络结构,分子马达活动和这些蛋白质细丝网络中的大规模力学之间的关系。这项工作的主要重要性在于,这些研究将更好地理解细胞如何使用分子马达对其环境施加力,以及这些马达的活动如何以可逆的方式改变网络的刚度。这种理解将有助于阐明基本的设计原理,通过这些原理可以构建使用纳米机器(即分子马达)主动控制其机械性能的人工活性材料。学生,研究生和本科生,将在与生物聚合物网络及其可逆可调机械性能相关的研究活动中接受培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Dennin其他文献
Non-Contact Microrheology of Monolayers and Membranes
- DOI:
10.1016/j.bpj.2011.11.211 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Roie Shlomovitz;Tom Boatwright;Michael Dennin;Alex J. Levine - 通讯作者:
Alex J. Levine
Michael Dennin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Dennin', 18)}}的其他基金
Conference: Learning to Build Authentic Partnerships Between Minority Serving Institutions and Predominately White Institutions
会议:学习在少数族裔服务机构和以白人为主的机构之间建立真正的伙伴关系
- 批准号:
1820920 - 财政年份:2018
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
HSI Conference: Pathways for Hispanic Students in STEM
HSI 会议:西班牙裔学生 STEM 之路
- 批准号:
1748570 - 财政年份:2017
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
DCL: NSF INCLUDES - California STEM INCLUDES Conference and Network
DCL:NSF 包括 - 加州 STEM 包括会议和网络
- 批准号:
1650570 - 财政年份:2016
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
Assessing the Impact of Teaching Faculty in STEM Institutional Transformation
评估师资力量对 STEM 机构转型的影响
- 批准号:
1612258 - 财政年份:2016
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
Collaborative Research: Investigating jamming in iceberg-choked fjords with field observations, laboratory experiments, and numerical modeling
合作研究:通过现场观察、实验室实验和数值模拟来调查冰山堵塞的峡湾中的干扰
- 批准号:
1506991 - 财政年份:2015
- 资助金额:
$ 30.9万 - 项目类别:
Continuing Grant
Collaborative Research: Interaction between Spherical Particles and Biomembranes
合作研究:球形颗粒与生物膜之间的相互作用
- 批准号:
1309402 - 财政年份:2013
- 资助金额:
$ 30.9万 - 项目类别:
Continuing Grant
NSF-Europe: Mechanical Properties of Thin-Film Active Materials
NSF-欧洲:薄膜活性材料的机械性能
- 批准号:
0354113 - 财政年份:2004
- 资助金额:
$ 30.9万 - 项目类别:
Continuing Grant
Surfactant Flow and Foam Stability
表面活性剂流动性和泡沫稳定性
- 批准号:
0085751 - 财政年份:2000
- 资助金额:
$ 30.9万 - 项目类别:
Continuing Grant
Studies of Pattern Formation using Electroconvection
利用电对流形成图案的研究
- 批准号:
9975479 - 财政年份:1999
- 资助金额:
$ 30.9万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323415 - 财政年份:2024
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331295 - 财政年份:2024
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
- 批准号:
2336135 - 财政年份:2024
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331296 - 财政年份:2024
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323414 - 财政年份:2024
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
- 批准号:
2336136 - 财政年份:2024
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2313746 - 财政年份:2023
- 资助金额:
$ 30.9万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 30.9万 - 项目类别:
Standard Grant