Collaborative Research: Bayesian Hierarchical Methods for Modeling Chromosomal Spatial Correlation

合作研究:用于建模染色体空间相关性的贝叶斯分层方法

基本信息

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).Recently, many genomic studies have shown that significant chromosomal spatial correlation exists in gene expression of many organisms. Ignoring such correlation in statistical modeling can greatly reduce the efficiency of estimation and the power of statistical inference. In this project, the investigators develop a set of new Bayesian hierarchical models to account for chromosomal spatial correlation in the following three areas of methodologies and applications: (1) incorporating the spatial correlation associated with linear chromosome structures into the analysis of gene expression data; (2) quantifying and inferring chromosome folding structures in vivo using gene expression data; (3) probing the global three dimensional structure of a chromosome in vivo. This study provides statistical tools to explore three dimensional (3D) chromosome structures and directly addresses the important biological question that how the 3D structures facilitate the coordination in gene transcription. Not only can it generate new biological insights about spatial configuration of chromosomes, but also it can greatly improve the understanding of the relationship between the function and structure of chromosomes in living organisms. It also has potential clinical significance; for example, it provides tools to formally identify and compare chromosomal spatial patterns in gene expression from tumor and normal samples, which can discover subtle but coordinated changes in the tumor genome and lead to clinical insights on the underlying regulatory mechanism of cancer. Besides scientific novelty and significance, this research fosters intensive collaboration among researchers from various fields including statistics, computational biology, experimental biology and clinical cancer research, and promotes intellectual interactions among participating institutions.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。最近,许多基因组研究表明,许多生物体的基因表达中存在显着的染色体空间相关性。在统计建模中忽略这种相关性会大大降低估计的效率和统计推断的能力。在该项目中,研究人员开发了一套新的贝叶斯分层模型,以解释以下三个方法学和应用领域中的染色体空间相关性:(1)将与线性染色体结构相关的空间相关性纳入基因表达数据的分析中; (2)利用基因表达数据量化并推断体内染色体折叠结构; (3)探测体内染色体的整体三维结构。这项研究提供了探索三维(3D)染色体结构的统计工具,并直接解决了3D结构如何促进基因转录协调的重要生物学问题。它不仅可以产生关于染色体空间配置的新生物学见解,而且可以极大地提高对生物体中染色体功能和结构之间关系的理解。它还具有潜在的临床意义;例如,它提供了正式识别和比较肿瘤和正常样本基因表达的染色体空间模式的工具,可以发现肿瘤基因组中微妙但协调的变化,并导致对癌症潜在调控机制的临床见解。 除了科学新颖性和意义外,这项研究还促进了统计学、计算生物学、实验生物学和临床癌症研究等各个领域的研究人员之间的密切合作,并促进了参与机构之间的智力互动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guanghua Xiao其他文献

An Adaptive Hierarchical Concatenated Network With A Robust Loss Function For Image Denoising
具有鲁棒损失函数的自适应分层级联网络用于图像去噪
  • DOI:
    10.1007/s10723-022-09601-6
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Guanghua Xiao;Huibin Wang;Jie Shen;Zhe Chen;Zhen Zhang
  • 通讯作者:
    Zhen Zhang
Comparison of protein concentrations in serum versus plasma from Alzheimer’s patients
阿尔茨海默病患者血清与血浆中蛋白质浓度的比较
High Performance ZnO Nanowire FET with ITO Contacts
具有 ITO 触点的高性能 ZnO 纳米线 FET
MetaPrism: A Toolkit for Joint Taxa/Gene Analysis of Metagenomic Sequencing Data
MetaPrism:宏基因组测序数据联合分类群/基因分析的工具包
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiwoong Kim;Shuang Jiang;Guanghua Xiao;Yang Xie;Dajiang J. Liu;Qiwei Li;A. Koh;Xiaowei Zhan
  • 通讯作者:
    Xiaowei Zhan
Assessing disease severity in cutaneous lupus patients using natural language processing: Preliminary data from a cohort study
使用自然语言处理评估皮肤狼疮患者的疾病严重程度:一项队列研究的初步数据
  • DOI:
    10.1016/j.jaad.2024.10.105
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    11.800
  • 作者:
    Kuroush Nezafati;Laura Wang;Ruichen Rong;Andrew J. Park;Jane Zhu;Guanghua Xiao;Yang Xie;Donghan M. Yang;Benjamin F. Chong
  • 通讯作者:
    Benjamin F. Chong

Guanghua Xiao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
  • 批准号:
    2348163
  • 财政年份:
    2023
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333326
  • 财政年份:
    2023
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333324
  • 财政年份:
    2023
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333325
  • 财政年份:
    2023
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
  • 批准号:
    2210282
  • 财政年份:
    2022
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
  • 批准号:
    2215169
  • 财政年份:
    2022
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
  • 批准号:
    2215168
  • 财政年份:
    2022
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing Bayesian Thinking in STEM
合作研究:推进 STEM 中的贝叶斯思维
  • 批准号:
    2215920
  • 财政年份:
    2022
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了