Dynamics of Gaseous Stars and Hydrodynamic Limits for Boltzmann Equations
气态恒星的动力学和玻尔兹曼方程的流体动力学极限
基本信息
- 批准号:0908007
- 负责人:
- 金额:$ 9.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The first goal of this project is to better understand physical vacuum as a free boundary for solutions to compressible Euler and Navier-Stokes equations with or without forcing and to develop a satisfactory nonlinear stability theory. The physical vacuum naturally appears in astrophysics and gas dynamics: a mathematical study of its behavior will help understand dynamics of gaseous stars. Furthermore, this investigation will lead to a general theory of degenerate hyperbolic equations. The second goal is to derive, with rigorous justification, various fluid equations from Boltzmann equations. Study of hydrodynamic limits for Boltzmann equations is important in connecting the two different subjects of kinetic theory and fluid dynamics. A rigorous study will help understand how large-scale behaviors emerge from dynamics or structures on small scales. In particular, for the Vlasov-Maxwell-Boltzmann system, it will open a new line of research. The compressible Euler and Navier-Stokes fluid equations and the Boltzmann kinetic equations are the basic, challenging models in gas dynamics; they have broad applications in many other areas of science and engineering as well. For example, Euler and Navier-Stokes equations are useful to study shallow water waves, and Boltzmann equations are important for semiconductor theory. The mathematical problems addressed in this project are not only important for the study of these equations, but also of interest in physics and other sciences. A better understanding of them would prompt the study of models for more complex, realistic flows.
该项目的第一个目标是更好地理解作为自由边界的物理真空,以解决可压缩欧拉方程和Navier-Stokes方程(有或没有强迫),并发展一个令人满意的非线性稳定性理论。 物理真空自然地出现在天体物理学和气体动力学中:对其行为的数学研究将有助于理解气态恒星的动力学。 此外,这项研究将导致退化双曲型方程的一般理论。 第二个目标是推导,严格的理由,各种流体方程玻尔兹曼方程。 玻尔兹曼方程的流体力学极限研究是联系运动论和流体力学这两门不同学科的重要环节。 严格的研究将有助于理解大规模的行为是如何从小规模的动力学或结构中产生的。 特别是对于Vlasov-Maxwell-Boltzmann系统,它将开辟一条新的研究路线。可压缩的欧拉和Navier-Stokes流体方程和玻尔兹曼动力学方程是气体动力学中基本的、具有挑战性的模型;它们在许多其他科学和工程领域也有广泛的应用。 例如,欧拉和纳维-斯托克斯方程对研究浅水波很有用,玻尔兹曼方程对半导体理论很重要。 在这个项目中解决的数学问题不仅对这些方程的研究很重要,而且在物理学和其他科学中也很重要。 更好地了解它们将促进对更复杂、更现实的流动模型的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nader Masmoudi其他文献
Vorticity directions near the blow-up time for the 3D Navier-Stokes flows with infinite energy
具有无限能量的 3D 纳维-斯托克斯流在爆炸时间附近的涡度方向
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Slim Ibrahim;Nader Masmoudi;KenjiNakanishi;K. Ito;三浦 英之 - 通讯作者:
三浦 英之
Scattering theory from a geometric view point
从几何角度看散射理论
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Nader Masmoudi;Kenji Nakanishi;奥山裕介;K. Ito - 通讯作者:
K. Ito
Characterization of polynomials from potential theory and complex dynamics
势论和复杂动力学的多项式表征
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Nader Masmoudi;Kenji Nakanishi;奥山裕介;K. Ito;奥山裕介 - 通讯作者:
奥山裕介
Existence, Uniqueness and Lipschitz Dependence for Patlak–Keller–Segel and Navier–Stokes in $${\mathbb{R}^2}$$ with Measure-Valued Initial Data
- DOI:
10.1007/s00205-014-0796-z - 发表时间:
2014-09-20 - 期刊:
- 影响因子:2.400
- 作者:
Jacob Bedrossian;Nader Masmoudi - 通讯作者:
Nader Masmoudi
Twoasymptotic problems for a singularnonlinear Schrodinger system
奇异非线性薛定谔系统的两个渐近问题
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:1.7
- 作者:
Nader Masmoudi;Kenji Nakanishi - 通讯作者:
Kenji Nakanishi
Nader Masmoudi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nader Masmoudi', 18)}}的其他基金
Hydrodynamic Stability, Boundary layers, Free boundaries, and Polymeric Flows
流体动力学稳定性、边界层、自由边界和聚合物流动
- 批准号:
1716466 - 财政年份:2017
- 资助金额:
$ 9.76万 - 项目类别:
Continuing Grant
Boundary layers, Free boundaries and polymeric flows
边界层、自由边界和聚合物流动
- 批准号:
1211806 - 财政年份:2012
- 资助金额:
$ 9.76万 - 项目类别:
Continuing Grant
Asymptotic problems and Well-posedness results in Fluid Mechanics and Plasma Physics
流体力学和等离子体物理学中的渐近问题和适定性结果
- 批准号:
0703145 - 财政年份:2007
- 资助金额:
$ 9.76万 - 项目类别:
Continuing Grant
Asymptotic Problems in Fluid Mechanics, Gas Dynamics and Quantum Mechanics
流体力学、气体动力学和量子力学中的渐近问题
- 批准号:
0403983 - 财政年份:2004
- 资助金额:
$ 9.76万 - 项目类别:
Standard Grant
Asymptotic Problems in Fluid Mechanics and Gas Dynamics
流体力学和气体动力学中的渐近问题
- 批准号:
0100946 - 财政年份:2001
- 资助金额:
$ 9.76万 - 项目类别:
Standard Grant
相似海外基金
Tribology tests of materials and fluids in gaseous controlled environment
气体受控环境中材料和流体的摩擦学测试
- 批准号:
2902361 - 财政年份:2023
- 资助金额:
$ 9.76万 - 项目类别:
Studentship
Effect of adhesive on combustion mechanism and gaseous and particulate emission from engineered building materials
粘合剂对工程建筑材料燃烧机制以及气体和颗粒物排放的影响
- 批准号:
23K03704 - 财政年份:2023
- 资助金额:
$ 9.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploring clouds and gaseous abundances in the atmospheres of Uranus and Neptune
探索天王星和海王星大气中的云和气体丰度
- 批准号:
2889689 - 财政年份:2023
- 资助金额:
$ 9.76万 - 项目类别:
Studentship
Mechanism of air-tropical forest exchange of gaseous and particulate reactive nitrogen in Southeast Asia
东南亚气态和颗粒活性氮气态-热带森林交换机制
- 批准号:
23KK0190 - 财政年份:2023
- 资助金额:
$ 9.76万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Understanding anti-spin-relaxation coatings for gaseous atoms from the inside of the coatings
从涂层内部了解气态原子的抗自旋弛豫涂层
- 批准号:
23H01845 - 财政年份:2023
- 资助金额:
$ 9.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Evaluation of artifacts in the collection of gaseous and particulate organic chemical components in the atmosphere
大气中气态和颗粒有机化学成分收集过程中的伪影评估
- 批准号:
23K17047 - 财政年份:2023
- 资助金额:
$ 9.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
On the road to sustainable transportation with renewable gaseous fuels
使用可再生气体燃料迈向可持续交通之路
- 批准号:
RGPIN-2021-02960 - 财政年份:2022
- 资助金额:
$ 9.76万 - 项目类别:
Discovery Grants Program - Individual
Dynamical encounters and black hole mergers in gaseous environments
气体环境中的动态相遇和黑洞合并
- 批准号:
2753508 - 财政年份:2022
- 资助金额:
$ 9.76万 - 项目类别:
Studentship
Production of valuable chemicals from gaseous waste
利用气态废物生产有价值的化学品
- 批准号:
LP200200136 - 财政年份:2022
- 资助金额:
$ 9.76万 - 项目类别:
Linkage Projects
McGill-Airpura alliance: the effects of novel sustainable filters and sorbents in indoor air purifiers on indoor bioaerosols, nanoparticles and gaseous pollutants
麦吉尔-Airpura联盟:室内空气净化器中新型可持续过滤器和吸附剂对室内生物气溶胶、纳米粒子和气态污染物的影响
- 批准号:
561077-2020 - 财政年份:2022
- 资助金额:
$ 9.76万 - 项目类别:
Alliance Grants