Hydrodynamic Stability, Boundary layers, Free boundaries, and Polymeric Flows
流体动力学稳定性、边界层、自由边界和聚合物流动
基本信息
- 批准号:1716466
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding the behavior of fluid flows is of fundamental importance in many scientific and technological fields, including engineering, geophysics, and biophysics. At the basic level, the dynamical behavior of fluid flow is described by the Euler or the Navier-Stokes equations. These complex systems of nonlinear partial differential equations are very difficult to study using classical techniques and only a few exact solutions are known to this day. In many applications, an exact solution is not needed and a main goal of this project is to give a qualitative description of solutions to these equations in some limiting cases. Indeed, when taken in some limiting situations, due to the presence of a small parameter or when considered for large time, these complex sets of equations may be reduced to simpler models. These simpler models are capable of providing important qualitative descriptions of the behavior of these solutions without having to compute them explicitly. This general method has applications in the study of the long-time behavior of complex systems, the development of singularities, the formation of special patterns, the transition between stability and instability and the first steps of transition towards turbulence. This project will involve the training of graduate students and postdocs. The main problem to be addressed in this project is the study of the asymptotic stability of some shear flows for the 2D Euler and the 2D Navier-Stokes equations. Some important progress was made recently in the study of the inviscid damping around Couette flow in a periodic setting for Gevrey regularity. A main goal of this project is to expand this study to the case of more general shear flows. A new difficulty comes from the fact that the linearized problem is more difficult to analyze and some deep ideas from functional analysis will be needed to overcome the lack of a simple explicit description of the solution. The second project is the study of the problem in the whole space (i.e. ,without the assumption of periodicity). The major difficulty here comes from the lack of uniformity of the mixing for low frequencies. The third project is to understand the behavior under rougher perturbations, namely perturbations which are only in Sobolev spaces. Some new nonlinear cascades should be discovered here. The fourth project is to study the case when damping does not occur, and try to identify special solutions such as cat's eyes flows. These four projects can also be formulated for the Navier-Stokes evolution and the major problem here is to understand the small viscosity limit.
了解流体流动的行为在许多科学和技术领域,包括工程,物理学和生物物理学中具有根本的重要性。在基本水平上,流体流动的动力学行为由欧拉或纳维尔-斯托克斯方程描述。这些复杂的系统的非线性偏微分方程是非常难以研究使用经典的技术和只有少数精确的解决方案是已知的这一天。在许多应用中,不需要精确解,本项目的主要目标是在某些极限情况下给出这些方程的解的定性描述。 实际上,当在某些限制情况下,由于存在小参数或考虑长时间时,这些复杂的方程组可以简化为更简单的模型。 这些更简单的模型能够提供这些解决方案的行为的重要定性描述,而不必显式地计算它们。 这种通用方法在复杂系统的长期行为,奇异性的发展,特殊模式的形成,稳定性和不稳定性之间的过渡和过渡到湍流的第一步的研究中有应用。该项目将涉及研究生和博士后的培训。本计画的主要问题是研究二维Euler方程和二维Navier-Stokes方程的某些切变流的渐近稳定性。在Gevrey正则性的周期性条件下,对Couette流的无粘阻尼的研究取得了一些重要进展。 这个项目的一个主要目标是将这项研究扩展到更一般的剪切流的情况。 一个新的困难来自于这样一个事实,即线性化的问题更难分析,需要从泛函分析中获得一些深刻的思想来克服缺乏对解决方案的简单明确的描述。第二个项目是在整个空间(即没有周期性的假设)的问题的研究。这里的主要困难来自低频混合的均匀性的缺乏。第三个项目是理解粗糙扰动下的行为,即仅在Sobolev空间中的扰动。 在此基础上,还将发现一些新的非线性级联。第四个项目是研究阻尼不发生时的情况,并尝试识别特殊的解决方案,如猫眼流。 这四个项目也可以制定的Navier-Stokes演化和这里的主要问题是要了解小粘度限制。
项目成果
期刊论文数量(37)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability of the Couette Flow for a 2D Boussinesq System Without Thermal Diffusivity
- DOI:10.1007/s00205-022-01789-x
- 发表时间:2020-10
- 期刊:
- 影响因子:2.5
- 作者:N. Masmoudi;B. Said-Houari;Weiren Zhao
- 通讯作者:N. Masmoudi;B. Said-Houari;Weiren Zhao
Incompressible limit for the free surface Navier-Stokes system
- DOI:10.1007/s40818-023-00148-7
- 发表时间:2021-10
- 期刊:
- 影响因子:2.8
- 作者:N. Masmoudi;F. Rousset;Changzheng Sun
- 通讯作者:N. Masmoudi;F. Rousset;Changzheng Sun
Minimal Mass Blowup Solutions for the Patlak-Keller-Segel Equation
- DOI:10.1002/cpa.21787
- 发表时间:2018-10-01
- 期刊:
- 影响因子:3
- 作者:Ghoul, Tej-Eddine;Masmoudi, Nader
- 通讯作者:Masmoudi, Nader
Stability threshold of two-dimensional Couette flow in Sobolev spaces
Sobolev空间中二维Couette流的稳定性阈值
- DOI:10.4171/aihpc/8
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Masmoudi, Nader;Zhao, Weiren
- 通讯作者:Zhao, Weiren
Vanishing Viscosity Limit for Incompressible Viscoelasticity in Two Dimensions
- DOI:10.1002/cpa.21853
- 发表时间:2017-03
- 期刊:
- 影响因子:3
- 作者:Yuan Cai;Zhen Lei;F. Lin;N. Masmoudi
- 通讯作者:Yuan Cai;Zhen Lei;F. Lin;N. Masmoudi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nader Masmoudi其他文献
Vorticity directions near the blow-up time for the 3D Navier-Stokes flows with infinite energy
具有无限能量的 3D 纳维-斯托克斯流在爆炸时间附近的涡度方向
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Slim Ibrahim;Nader Masmoudi;KenjiNakanishi;K. Ito;三浦 英之 - 通讯作者:
三浦 英之
Scattering theory from a geometric view point
从几何角度看散射理论
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Nader Masmoudi;Kenji Nakanishi;奥山裕介;K. Ito - 通讯作者:
K. Ito
Characterization of polynomials from potential theory and complex dynamics
势论和复杂动力学的多项式表征
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Nader Masmoudi;Kenji Nakanishi;奥山裕介;K. Ito;奥山裕介 - 通讯作者:
奥山裕介
Existence, Uniqueness and Lipschitz Dependence for Patlak–Keller–Segel and Navier–Stokes in $${\mathbb{R}^2}$$ with Measure-Valued Initial Data
- DOI:
10.1007/s00205-014-0796-z - 发表时间:
2014-09-20 - 期刊:
- 影响因子:2.400
- 作者:
Jacob Bedrossian;Nader Masmoudi - 通讯作者:
Nader Masmoudi
Twoasymptotic problems for a singularnonlinear Schrodinger system
奇异非线性薛定谔系统的两个渐近问题
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:1.7
- 作者:
Nader Masmoudi;Kenji Nakanishi - 通讯作者:
Kenji Nakanishi
Nader Masmoudi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nader Masmoudi', 18)}}的其他基金
Boundary layers, Free boundaries and polymeric flows
边界层、自由边界和聚合物流动
- 批准号:
1211806 - 财政年份:2012
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Dynamics of Gaseous Stars and Hydrodynamic Limits for Boltzmann Equations
气态恒星的动力学和玻尔兹曼方程的流体动力学极限
- 批准号:
0908007 - 财政年份:2009
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Asymptotic problems and Well-posedness results in Fluid Mechanics and Plasma Physics
流体力学和等离子体物理学中的渐近问题和适定性结果
- 批准号:
0703145 - 财政年份:2007
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Asymptotic Problems in Fluid Mechanics, Gas Dynamics and Quantum Mechanics
流体力学、气体动力学和量子力学中的渐近问题
- 批准号:
0403983 - 财政年份:2004
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Asymptotic Problems in Fluid Mechanics and Gas Dynamics
流体力学和气体动力学中的渐近问题
- 批准号:
0100946 - 财政年份:2001
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
相似国自然基金
随机激励下多稳态系统的临界过渡识别及Basin Stability分析
- 批准号:11872305
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Regularity and Stability Analysis of Free-Boundary Problems in Fluid Dynamics
流体动力学自由边界问题的规律性和稳定性分析
- 批准号:
2205710 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Existence and Stability Analysis for Nonlinear Free Boundary and Evolution Problems
非线性自由边界和演化问题的存在性和稳定性分析
- 批准号:
2054689 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
The project will initially consider the rotating disc boundary layer flow and will investigate the effect on its stability
该项目将首先考虑旋转盘边界层流动,并将研究对其稳定性的影响
- 批准号:
2431520 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Studentship
Investigating Boundary Conditions for Nonlinear Entropy Stability in Navier-Stokes flows
研究纳维-斯托克斯流中非线性熵稳定性的边界条件
- 批准号:
553261-2020 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Stability and Bifurcations in Free-Boundary Models of Active Gels
活性凝胶自由边界模型的稳定性和分岔
- 批准号:
2005262 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Research on the global structure of solutions and their stability for nonlocal boundary value problems by using elliptic functions
利用椭圆函数研究非局部边值问题解的全局结构及其稳定性
- 批准号:
19K03593 - 财政年份:2019
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the stability of boundary integral methods in wave problems
波浪问题中边界积分法的稳定性
- 批准号:
18H03251 - 财政年份:2018
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Nonlinear stability mechanisms and boundary layer singularities in fluid flows
职业:流体流动中的非线性稳定机制和边界层奇点
- 批准号:
1911413 - 财政年份:2018
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Determining Grain Boundary Solute Segregation Specificity in Nanocrystalline Stability
确定纳米晶稳定性中的晶界溶质偏析特异性
- 批准号:
1709803 - 财政年份:2017
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
CAREER: Nonlinear stability mechanisms and boundary layer singularities in fluid flows
职业:流体流动中的非线性稳定机制和边界层奇点
- 批准号:
1652134 - 财政年份:2017
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant